Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV exploits competition among T cells

18.10.2006
Research points to new strategy for AIDS vaccination

A new HIV study shows how competition among the human immune system's T cells allows the virus to escape destruction and eventually develop into full-blown AIDS. The study, which employs a computer model of simultaneous virus and immune system evolution, also suggests a new strategy for vaccinating against the virus – a strategy that the computer simulations suggest may prevent the final onset of AIDS.

The research, which is slated for publication in Physical Review Letters, is available online at http://arxiv.org/abs/q-bio.PE/0610018.

"Competition among T cells exerts a small influence for most diseases, but it's fatal for HIV," said study co-author Michael Deem, Rice University's John W. Cox Professor in Biochemical and Genetic Engineering and professor of physics and astronomy.

The new computer model, created by Deem and Guanyu Wang, now an assistant professor of physics at George Washington University, is the first to accurately reproduce all three stages of HIV infection. The first is marked by an initial spike in virus production that's immediately followed by dramatic drop as the immune system recognizes the threat, mounts a defense and destroys most of the invading viruses. The second phase is a long period of clinical latency that can last up to 10 years. In this phase, a small amount of virus mutates fast enough to escape initial detection and continues to mutate over time. The third phase, AIDS, occurs when the virus has changed so much that the body's T cells are no longer effective at keeping it in check.

Deem and Wang's computer model accurately describes all three phases of HIV infection by incorporating a key component: competition among T cells. The model includes two forms of competition. The first form leads to a phenomenon known as deceptive imprinting, or original antigenic sin. Original antigenic sin is the tendency for memory immune cells produced in response to a first viral infection to suppress the creation of new immune cells in response to a second infection by a related strain. The second type of competition, immunodominance, occurs when several viral strains simultaneously infect one person. In this case, T cells compete to recognize the different strains. The winners – the T cells that the body produces in mass quantities to fight the disease – are the ones with the best overall record against the most recogniztable strains. Among the losers, however, there may be T cells that better control the other less recognizable, but still deadly, strains.

"Once the immune system chooses a winning set of T cells, it has a natural tendency to go with those cells when it's confronted by new strains of the same disease in the future," Deem said. "For HIV, which mutates rapidly, this is an Achilles' heel. We found a direct correlation between the level of competition among T cells and the rate at which the virus escaped."

Deem said one strategy to combat this effect would be to vaccinate against the strains of HIV that will inevitably evolve in the body in a manner that was designed to reduce immunodominance. One such strategy – polytopic vaccination – involves giving vaccines against different strains of the same disease simultaneously in different parts of the body. The approach capitalizes on the fact that different lymph nodes – the sites where T cells compete to be chosen as the winners against a particular disease – act as collection points for different parts of the body. Moreover, because it takes 4-5 days for T cells produced in a lymph node to begin to leave it, the possibility exists to set up simultaneous, independent competition against each of the multiple strains that will evolve by injecting each strain simultaneously so that they drain to different lymph nodes. In this case, no single T cell is chosen as a winner. Instead, a separate winner for each strain is picked in each affected lymph node before immunodominance can come into play.

"In our simulations, this strategy appears effective at all but eliminating competition among T cells," Deem said. "As a result, HIV remained in a state of permanent latency and was never able to escape the immune system's grasp to develop into AIDS."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>