Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV exploits competition among T cells

18.10.2006
Research points to new strategy for AIDS vaccination

A new HIV study shows how competition among the human immune system's T cells allows the virus to escape destruction and eventually develop into full-blown AIDS. The study, which employs a computer model of simultaneous virus and immune system evolution, also suggests a new strategy for vaccinating against the virus – a strategy that the computer simulations suggest may prevent the final onset of AIDS.

The research, which is slated for publication in Physical Review Letters, is available online at http://arxiv.org/abs/q-bio.PE/0610018.

"Competition among T cells exerts a small influence for most diseases, but it's fatal for HIV," said study co-author Michael Deem, Rice University's John W. Cox Professor in Biochemical and Genetic Engineering and professor of physics and astronomy.

The new computer model, created by Deem and Guanyu Wang, now an assistant professor of physics at George Washington University, is the first to accurately reproduce all three stages of HIV infection. The first is marked by an initial spike in virus production that's immediately followed by dramatic drop as the immune system recognizes the threat, mounts a defense and destroys most of the invading viruses. The second phase is a long period of clinical latency that can last up to 10 years. In this phase, a small amount of virus mutates fast enough to escape initial detection and continues to mutate over time. The third phase, AIDS, occurs when the virus has changed so much that the body's T cells are no longer effective at keeping it in check.

Deem and Wang's computer model accurately describes all three phases of HIV infection by incorporating a key component: competition among T cells. The model includes two forms of competition. The first form leads to a phenomenon known as deceptive imprinting, or original antigenic sin. Original antigenic sin is the tendency for memory immune cells produced in response to a first viral infection to suppress the creation of new immune cells in response to a second infection by a related strain. The second type of competition, immunodominance, occurs when several viral strains simultaneously infect one person. In this case, T cells compete to recognize the different strains. The winners – the T cells that the body produces in mass quantities to fight the disease – are the ones with the best overall record against the most recogniztable strains. Among the losers, however, there may be T cells that better control the other less recognizable, but still deadly, strains.

"Once the immune system chooses a winning set of T cells, it has a natural tendency to go with those cells when it's confronted by new strains of the same disease in the future," Deem said. "For HIV, which mutates rapidly, this is an Achilles' heel. We found a direct correlation between the level of competition among T cells and the rate at which the virus escaped."

Deem said one strategy to combat this effect would be to vaccinate against the strains of HIV that will inevitably evolve in the body in a manner that was designed to reduce immunodominance. One such strategy – polytopic vaccination – involves giving vaccines against different strains of the same disease simultaneously in different parts of the body. The approach capitalizes on the fact that different lymph nodes – the sites where T cells compete to be chosen as the winners against a particular disease – act as collection points for different parts of the body. Moreover, because it takes 4-5 days for T cells produced in a lymph node to begin to leave it, the possibility exists to set up simultaneous, independent competition against each of the multiple strains that will evolve by injecting each strain simultaneously so that they drain to different lymph nodes. In this case, no single T cell is chosen as a winner. Instead, a separate winner for each strain is picked in each affected lymph node before immunodominance can come into play.

"In our simulations, this strategy appears effective at all but eliminating competition among T cells," Deem said. "As a result, HIV remained in a state of permanent latency and was never able to escape the immune system's grasp to develop into AIDS."

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>