Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study evaluates methods to prevent importation of illicit nuclear materials

17.10.2006
Research suggests that new port security act may be insufficient

The nightmare scenario in homeland security is a terrorist detonation of a nuclear weapon on U.S. soil. In a paper published this week in Risk Analysis: An International Journal, Dr. Lawrence Wein of the Standard University Graduate School of Business, along with his co-authors, discusses the costs and effectiveness of available technologies for detecting a nuclear device at a U.S. port or on a U.S.-destined ship at a foreign port. This study comes on the heels of the President signing the SAFE Port Act of 2006 into law last Friday.

Over 95% of overseas U.S. imports and exports are shipped in standardized containers that enter the country through U.S. ports. These containers represent a potentially vulnerable mechanism for the delivery of nuclear and radiological devices by foreign terrorists. The cost of a nuclear detonation at a U.S. port is estimated at about 1 trillion dollars. Terrorists may also attempt to detonate a smuggled device in a U.S. city center to maximize the loss of life.

Professor Wein and colleagues discuss an 11-layer security system to detect a smuggled device and use game theory to find the optimum combination of security measures. The authors estimate a low probability of detection with the current system of approximately 10% (before the SAFE Port Act is implemented). The authors suggest that achieving a detection rate of at least 90% would require an investment of about $2 billion for testing at domestic ports only with an additional $11 billion for testing done at overseas ports.

According to the study, one major limitation of the SAFE Port Act is that it only requires radiation detection. Because terrorists can shield their weapon with dense material, two-dimensional scans are also needed to detect shielding. A second major limitation of the SAFE Port Act is that it does not require inspections at overseas ports for ships destined to the U.S., although it does provide training and loans for detection equipment for ports in other nations. Terrorists may be able to detonate a device upon arrival at a U.S. port before any attempts at detection occur. The only way to prevent this scenario is to inspect cargo at overseas ports.

Dr. Wein summarized his research by noting "the estimated $10 billion/year required to secure ports is comparable to the current annual investment for ballistic missile defense, making this a sound investment in light of the shift in the nature of the threat from adversarial nations to terrorists."

Rick Reiss | EurekAlert!
Further information:
http://www.exponent.com

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>