Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New study evaluates methods to prevent importation of illicit nuclear materials

Research suggests that new port security act may be insufficient

The nightmare scenario in homeland security is a terrorist detonation of a nuclear weapon on U.S. soil. In a paper published this week in Risk Analysis: An International Journal, Dr. Lawrence Wein of the Standard University Graduate School of Business, along with his co-authors, discusses the costs and effectiveness of available technologies for detecting a nuclear device at a U.S. port or on a U.S.-destined ship at a foreign port. This study comes on the heels of the President signing the SAFE Port Act of 2006 into law last Friday.

Over 95% of overseas U.S. imports and exports are shipped in standardized containers that enter the country through U.S. ports. These containers represent a potentially vulnerable mechanism for the delivery of nuclear and radiological devices by foreign terrorists. The cost of a nuclear detonation at a U.S. port is estimated at about 1 trillion dollars. Terrorists may also attempt to detonate a smuggled device in a U.S. city center to maximize the loss of life.

Professor Wein and colleagues discuss an 11-layer security system to detect a smuggled device and use game theory to find the optimum combination of security measures. The authors estimate a low probability of detection with the current system of approximately 10% (before the SAFE Port Act is implemented). The authors suggest that achieving a detection rate of at least 90% would require an investment of about $2 billion for testing at domestic ports only with an additional $11 billion for testing done at overseas ports.

According to the study, one major limitation of the SAFE Port Act is that it only requires radiation detection. Because terrorists can shield their weapon with dense material, two-dimensional scans are also needed to detect shielding. A second major limitation of the SAFE Port Act is that it does not require inspections at overseas ports for ships destined to the U.S., although it does provide training and loans for detection equipment for ports in other nations. Terrorists may be able to detonate a device upon arrival at a U.S. port before any attempts at detection occur. The only way to prevent this scenario is to inspect cargo at overseas ports.

Dr. Wein summarized his research by noting "the estimated $10 billion/year required to secure ports is comparable to the current annual investment for ballistic missile defense, making this a sound investment in light of the shift in the nature of the threat from adversarial nations to terrorists."

Rick Reiss | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>