Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A salinity study in the Mobile Delta region

17.10.2006
Are man-made barriers aiding the proliferation of invasive aquatic vegetation?

Habitat modifications are among mankind's most pervasive alterations of our nation's estuarine ecosystems.

When such modifications are extensive, as is the case for the Mobile Bay Causeway, they can alter patterns of natural hydrography. Among the possible consequences of the Causeway is the reduction of water exchange between the fresh water in the lower reaches of Mobile-Tensaw Delta, and the saltier waters of the Gulf of Mexico. If true, this barrier may have created persistent low salinity conditions that local conservationists believe have provided refuge for an exotic species of submerged aquatic vegetation, the Eurasian Milfoil (Myriophyllum spicatum) to survive in during periods when salinity is high throughout this estuary.

When salinity is low, milfoil fragments from these freshwater refuges end up in nearby estuarine grassbeds, where they subsequently outgrow and competitively displace native submerged grasses.

To test these hypotheses, Dr. John Valentine and Marine Technician Susan Sklenar, both of the Dauphin Island Sea Lab (DISL) in Alabama, are currently comparing the results of salinity tolerance experiments they have conducted using milfoil at the DISL with two years of field data which document salinity patterns within the upper reaches of Mobile Bay.

The preliminary results of these experiments suggest that only the most extreme salinities, those observed during hurricane landfalls in the northern Gulf of Mexico, are lethal to milfoil.

"Right after Hurricane Katrina, we noticed that milfoil was not as abundant in those places where it used to be plentiful," recounts Dr. Valentine. "Whether it was the turbidity from the storm or the salinity from waters crashing over the MBC, we're hoping these experiments will be able to help determine the cause."

In the coming year, Dr. Valentine and his colleagues will be conducting additional field experiments to determine if in fact milfoil will outcompete native grasses for habitat within this estuary. It is hoped that these experiments, when completed, will allow DISL to make data-based recommendations for habitat restoration later next year.

Lisa Young | EurekAlert!
Further information:
http://www.disl.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>