Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antique Whale Oil Provides Insights to Origin of Pre-Industrial Chemicals

16.10.2006
Samples from Whaleship Charles W. Morgan Helps Scientists Trace Sources

One of the last remaining New England whaling ships has provided unexpected insights into the origin of halogenated organic compounds (HOCs) that have similar chemical and physical properties as toxic PCBs and the pesticide DDT. HOCs are found everywhere and degrade slowly, but some are naturally produced and others are produced by humans.

While large scale industrial production of HOCs did not begin until the late 1920s, scientists from the Woods Hole Oceanographic Institution (WHOI) in Massachusetts say naturally produced HOCs were bioaccumulating in marine mammals before major chemical companies like Monsanto, Dupont, and 3M were making HOCs for industrial uses. Their findings are reported in the online version of the journal Environmental Pollution.

In the past decade, scientists conducting routine analyses of animal and food samples began to discover unknown HOCs in their samples. Detective work led to their identities, but where these compounds were coming from has been a mystery. While some of these "unknown" compounds can be loosely traced to a possible industrial or natural source, the majority of these compounds have no known industrial or natural sources.

Emma Teuten and Christopher Reddy found their pre-industrial HOC samples in a most unlikely place: whale oil from the Charles W. Morgan, one of the last whaling ships operating during the 19th and early 20th century. Built in 1841 in New Bedford, Mass., the ship traveled the world looking for whales, often on voyages of three years or more. The ship is now preserved and on public display at Mystic Seaport in Mystic, Conn. The researchers received the whale oil samples from the New Bedford Whaling Museum.

Teuten and Reddy studied one sample of antique whale oil and found the HOCs in all the samples . The results provide further evidence that naturally produced HOCs were accumulating in marine mammals long before the human-produced varieties.

“What is most interesting to us is that we still find these ’natural’ compounds in recent samples from marine mammals, human breast milk, and commercially available fish in Canada,” said study co-author Christopher Reddy, an associate scientist in the WHOI Marine Chemistry and Geochemistry Department. With co-author Emma Teuten, now at the University of Plymouth, England but previously at WHOI, Reddy studied one of the previously unknown HOCs and determined that it was from a natural source, not industrial pollution. The approach was time consuming, taking more than six months of lab work to complete, and required more than ten pounds of whale blubber.

“Our main goal now is to identify who is making them, why, and how toxic they are,” said Teuten. “We suspect that many of these compounds were and are made by bacteria, plants, animals as chemical defense mechanisms.”

Reddy says the properties of these natural compounds he and Teuten found in the archived whale oil are similar to those of industrial HOCs. “Most industrial HOCs do degrade in the environment, although very slowly. With adequate regulations regarding the manufacture and release of the industrial versions, we expect in the future that natural HOCs, rather than industrial ones, will again be the only HOCs found in animal and human tissue.”

Reddy says these results should motivate science to consider the ecological role and bioactivity of these natural HOCs and how pre-exposure to these compounds prepared bacteria, plants, animals, and humans for industrial HOCs introduced during the past century. It is well known that organisms have evolved defensive mechanisms against chemicals in their environment, and until recently the sources of these chemicals were primarily natural. The importance of HOCs like those identified by Teuten and Reddy in the evolution of these defenses is not yet understood.

Industrial HOCs have been accumulating in the environment since the 1930’s. Production of PCBs began in 1929, DDT in the late 1930s. “Knowing that the natural compounds have been produced for much longer times, we can use the natural sources as tools in studying the industrial ones,” Teuten said. “For example, we may be able to use these natural HOCs as chemical tracers, just like dyes are used in medicine.”

This study was supported by the National Science Foundation, WHOI Ocean Life Institute, and The Camille and Henry Dreyfus Foundation.

Shelley Dawicki | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>