Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antique Whale Oil Provides Insights to Origin of Pre-Industrial Chemicals

16.10.2006
Samples from Whaleship Charles W. Morgan Helps Scientists Trace Sources

One of the last remaining New England whaling ships has provided unexpected insights into the origin of halogenated organic compounds (HOCs) that have similar chemical and physical properties as toxic PCBs and the pesticide DDT. HOCs are found everywhere and degrade slowly, but some are naturally produced and others are produced by humans.

While large scale industrial production of HOCs did not begin until the late 1920s, scientists from the Woods Hole Oceanographic Institution (WHOI) in Massachusetts say naturally produced HOCs were bioaccumulating in marine mammals before major chemical companies like Monsanto, Dupont, and 3M were making HOCs for industrial uses. Their findings are reported in the online version of the journal Environmental Pollution.

In the past decade, scientists conducting routine analyses of animal and food samples began to discover unknown HOCs in their samples. Detective work led to their identities, but where these compounds were coming from has been a mystery. While some of these "unknown" compounds can be loosely traced to a possible industrial or natural source, the majority of these compounds have no known industrial or natural sources.

Emma Teuten and Christopher Reddy found their pre-industrial HOC samples in a most unlikely place: whale oil from the Charles W. Morgan, one of the last whaling ships operating during the 19th and early 20th century. Built in 1841 in New Bedford, Mass., the ship traveled the world looking for whales, often on voyages of three years or more. The ship is now preserved and on public display at Mystic Seaport in Mystic, Conn. The researchers received the whale oil samples from the New Bedford Whaling Museum.

Teuten and Reddy studied one sample of antique whale oil and found the HOCs in all the samples . The results provide further evidence that naturally produced HOCs were accumulating in marine mammals long before the human-produced varieties.

“What is most interesting to us is that we still find these ’natural’ compounds in recent samples from marine mammals, human breast milk, and commercially available fish in Canada,” said study co-author Christopher Reddy, an associate scientist in the WHOI Marine Chemistry and Geochemistry Department. With co-author Emma Teuten, now at the University of Plymouth, England but previously at WHOI, Reddy studied one of the previously unknown HOCs and determined that it was from a natural source, not industrial pollution. The approach was time consuming, taking more than six months of lab work to complete, and required more than ten pounds of whale blubber.

“Our main goal now is to identify who is making them, why, and how toxic they are,” said Teuten. “We suspect that many of these compounds were and are made by bacteria, plants, animals as chemical defense mechanisms.”

Reddy says the properties of these natural compounds he and Teuten found in the archived whale oil are similar to those of industrial HOCs. “Most industrial HOCs do degrade in the environment, although very slowly. With adequate regulations regarding the manufacture and release of the industrial versions, we expect in the future that natural HOCs, rather than industrial ones, will again be the only HOCs found in animal and human tissue.”

Reddy says these results should motivate science to consider the ecological role and bioactivity of these natural HOCs and how pre-exposure to these compounds prepared bacteria, plants, animals, and humans for industrial HOCs introduced during the past century. It is well known that organisms have evolved defensive mechanisms against chemicals in their environment, and until recently the sources of these chemicals were primarily natural. The importance of HOCs like those identified by Teuten and Reddy in the evolution of these defenses is not yet understood.

Industrial HOCs have been accumulating in the environment since the 1930’s. Production of PCBs began in 1929, DDT in the late 1930s. “Knowing that the natural compounds have been produced for much longer times, we can use the natural sources as tools in studying the industrial ones,” Teuten said. “For example, we may be able to use these natural HOCs as chemical tracers, just like dyes are used in medicine.”

This study was supported by the National Science Foundation, WHOI Ocean Life Institute, and The Camille and Henry Dreyfus Foundation.

Shelley Dawicki | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>