Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New milestone in the gentics of heart disease

13.10.2006
Research in the PROCAM study set up to identify new genetic risk factors for heart attack

A new milestone in understanding the genetic background of atherosclerosis and heart attack was announced on Thursday by Professor Gerd Assmann, this year's winner of the prestigious Morgagni prize for biomedical research during the award ceremony in Padua, Italy.

Gerd Assmann and his colleague Monika Stoll at the Leibniz Institute of Arteriosclerosis Research in Muenster have been performing genetic analyses in the German Prospective Cardiovascular Muenster (PROCAM) study to identify the genetic factors underlying the predisposition to heart attack. This disease is known to over-proportionally affect certain families - a clear hint to genetics as a contributing factor. A first milestone has been reached now in this research: More than 800 patients who suffered from a myocardial infarction and 800 controls have been genetically profiled. The results have revealed defined genetic traits predisposing an individual to a myocardial infarction. These findings are now awaiting their confirmation in a prospective clinical trail involving 2250 individuals. This is also expected to provide information how the findings can be combined into clinical algorithms for future cardiovascular risk management of patients. The recruitment of the new trial has already started

"This study, partly funded by the Diagnostics Division of Bayer HealthCare LLC (Tarrytown, NY, USA) takes genetic research in PROCAM to the next level", said Assmann. "Using the most advanced technology available we have been able to obtain exciting new information on the genetic basis of atherosclerosis in general and heart attack in particular."

Since 1978, the PROCAM study has been studying the causes of heart attack, stroke and atherosclerosis among the citizens of the northern German University City of Muenster and environs. The study at present includes more than 46.000 individuals in long-term follow-up for cardiovascular disease. The largest investigation of its kind in Europe, PROCAM has played a key role in identifying asymptomatic high risk individuals for heart attack, which remains the most frequent cause of death in the developed world - and increasingly also in many countries of Asia and South America. A simple risk score developed in PROCAM is now very widely used by many family doctors, cardiologists and other practitioners of preventive medicine throughout Europe and is making a major contribution towards reducing heart attack rates.

"This unique chance to learn about genetic heart attack risk was made possible by the great generosity of many thousands of my fellow-citizens who donated their time and their blood samples to assist our research", notes Assmann. "We are grateful that the participants in PROCAM gave informed consent for genetic research and we have taken special care to protect the confidentiality of the data from participants and their families", he adds. The project was reviewed and approved by an ethical oversight committee. An external oversight committee also regularly reviews the results of PROCAM.

Studies such as that reported by Assmann benefit from the wealth of information derived from the Human Genome Project, which published the complete human DNA code in 2000. Since then, great effort has been devoted to studying the genetic causes for the differences that make each individual person unique. Researchers have discovered that most of the inherited variation between people is due to the fact that about every five-hundredth letter of the genetic code is not fixed, but differs between different individuals. Now, Assmann and colleagues have investigated a half-million of these variable letters (single nucleotide polymorphisms or SNPs) in both MI patients and PROCAM controls and have narrowed down the search to only 400 SNPs that cluster in about 100 candidate genes. This is as if one narrowed down a search from all the books in the Library of Congress to a few hundred volumes on an even smaller number of shelves.

Advanced computer programs will now be used to match these candidates with various aspects of cell function in order to pinpoint those that make the biggest contribution to heart attack risk and to understand the detailed mechanism by which they increase risk.

A feature of this analysis that sets its apart from similar studies elsewhere is the fact that known risk factors for heart disease such as cholesterol, smoking and blood pressure were already accounted for, so that any genes found are likely to identify new disease mechanisms. This feature is of particular importance because even with the contribution made by PROCAM and other studies to risk prediction, about two-thirds of all heart attacks occur in men and women whose levels of conventional risk factors are not increased and who are therefore not currently regarded as being at high risk. "The main challenge for preventive research at the present time," says Assmann, "is to improve our ability to identify more accurately those people who appear to be at low or medium risk, but who are actually likely to suffer a heart attack in the near to medium future." Genetic research such as that presented by Assmann is likely to be one of the main ways in which such hidden high-risk can be found. This is not just an academic exercise, but is the key to intervention and risk reduction. For example, the target to which the cholesterol level should be lowered by diet or medication depends on a person's level of risk: persons with low risk are able to safely tolerate a high cholesterol level, while in those at high risk of heart attack, every effort must be made to lower cholesterol as far as possible.

Jutta Reising | idw
Further information:
http://www.uni-muenster.de/
http://www.lifa.uni-muenster.de/

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>