Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Central American fires impact US air quality and climate

Scientists using NASA satellites and computer models have shown that pollutants from Central American biomass burning can influence air quality and climate in the United States.

A NASA-funded study published in the July 26, 2006 Journal of Geophysical Research-Atmospheres found that during April-May 2003, large amounts of smoke, which include aerosols -- tiny particles suspended in the air -- from biomass burning in the Yucatan Peninsula and southern Mexico reached Texas, Oklahoma, and other areas in the southeastern United States.

The smoke plumes degraded visibility and air quality in coastal regions along the Gulf of Mexico and resulted in the greatest concentration of small particulate matter in southern Texas since 1998. By blocking incoming sunlight, the smoke plumes also cooled surface air temperatures over land. But higher in the atmosphere the smoke absorbed solar radiation and warmed temperatures. This created a circulation pattern that trapped smoke aerosols in the lower atmosphere, worsening air quality.

The researchers used a newly developed computer model to simulate the transport and effects of smoke in the atmosphere and on the Earth's surface. The model couples aerosol properties with meteorology and uses hourly smoke emission data from the NASA-led Fire Locating and Monitoring of Burning Emissions (FLAMBE) project. FLAMBE is a joint effort by NASA, the U.S. Navy, the National Oceanic and Atmospheric Administration and university partners to develop smoke aerosol forecasting models for the benefit for the global weather community.

"Although this computer model is not currently used in air-quality and weather forecasting, it is superior to other models for this purpose because it explicitly accounts for the diurnal variation of smoke emission from biomass burning fires and the radiative impacts of aerosols so that their impact on meteorology can be studied," said study co-author Sundar Christopher of the University of Alabama, Huntsville, Ala.

Comparisons with ground-based observations and imagery from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua Earth Observing System satellites showed that the model accurately simulated the impact of smoke on air temperature and the amount of sunlight absorbed and scattered through the atmosphere.

MODIS data was particularly useful in determining how aerosols from the Central American fires affected the amount of sunlight passing through the atmosphere, which can impact surface and atmospheric temperatures. "MODIS data allows us to capture the meteorological impacts of smoke and aerosols, especially important during the tropical dry season each spring when biomass burning peaks and pollutants are transported to the United States," said Christopher.

Smoke particles and aerosols scatter incoming sunlight while black carbon aerosols absorb solar radiation, affecting the atmospheric temperature profile. In turn, this alters evaporation and cloud formation. Smoke particles also often act as cloud condensation nuclei -- small particles on which water vapor condenses and forms clouds -- influencing the formation and distribution of rainfall. When combined with certain weather patterns, these aerosols can also have a significant impact on local and regional air quality according to the study.

This work demonstrated a new capability to improve air quality and climate forecasts, but researchers need to learn more about how smoke and aerosols impact clouds. "New satellite data, including that from the joint NASA and French Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation satellite, should help us better understand cloud microphysical processes and how aerosols impact cloud formation," said Christopher. Combining this information with improved computer models will help scientists better understand the role of smoke and aerosols on the climate to improve forecasts, even when the pollutant source is thousands of miles away.

Rob Gutro | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>