Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Central American fires impact US air quality and climate

12.10.2006
Scientists using NASA satellites and computer models have shown that pollutants from Central American biomass burning can influence air quality and climate in the United States.

A NASA-funded study published in the July 26, 2006 Journal of Geophysical Research-Atmospheres found that during April-May 2003, large amounts of smoke, which include aerosols -- tiny particles suspended in the air -- from biomass burning in the Yucatan Peninsula and southern Mexico reached Texas, Oklahoma, and other areas in the southeastern United States.

The smoke plumes degraded visibility and air quality in coastal regions along the Gulf of Mexico and resulted in the greatest concentration of small particulate matter in southern Texas since 1998. By blocking incoming sunlight, the smoke plumes also cooled surface air temperatures over land. But higher in the atmosphere the smoke absorbed solar radiation and warmed temperatures. This created a circulation pattern that trapped smoke aerosols in the lower atmosphere, worsening air quality.

The researchers used a newly developed computer model to simulate the transport and effects of smoke in the atmosphere and on the Earth's surface. The model couples aerosol properties with meteorology and uses hourly smoke emission data from the NASA-led Fire Locating and Monitoring of Burning Emissions (FLAMBE) project. FLAMBE is a joint effort by NASA, the U.S. Navy, the National Oceanic and Atmospheric Administration and university partners to develop smoke aerosol forecasting models for the benefit for the global weather community.

"Although this computer model is not currently used in air-quality and weather forecasting, it is superior to other models for this purpose because it explicitly accounts for the diurnal variation of smoke emission from biomass burning fires and the radiative impacts of aerosols so that their impact on meteorology can be studied," said study co-author Sundar Christopher of the University of Alabama, Huntsville, Ala.

Comparisons with ground-based observations and imagery from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua Earth Observing System satellites showed that the model accurately simulated the impact of smoke on air temperature and the amount of sunlight absorbed and scattered through the atmosphere.

MODIS data was particularly useful in determining how aerosols from the Central American fires affected the amount of sunlight passing through the atmosphere, which can impact surface and atmospheric temperatures. "MODIS data allows us to capture the meteorological impacts of smoke and aerosols, especially important during the tropical dry season each spring when biomass burning peaks and pollutants are transported to the United States," said Christopher.

Smoke particles and aerosols scatter incoming sunlight while black carbon aerosols absorb solar radiation, affecting the atmospheric temperature profile. In turn, this alters evaporation and cloud formation. Smoke particles also often act as cloud condensation nuclei -- small particles on which water vapor condenses and forms clouds -- influencing the formation and distribution of rainfall. When combined with certain weather patterns, these aerosols can also have a significant impact on local and regional air quality according to the study.

This work demonstrated a new capability to improve air quality and climate forecasts, but researchers need to learn more about how smoke and aerosols impact clouds. "New satellite data, including that from the joint NASA and French Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation satellite, should help us better understand cloud microphysical processes and how aerosols impact cloud formation," said Christopher. Combining this information with improved computer models will help scientists better understand the role of smoke and aerosols on the climate to improve forecasts, even when the pollutant source is thousands of miles away.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/vision/earth/environment/central_am_fires.html

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>