Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Central American fires impact US air quality and climate

12.10.2006
Scientists using NASA satellites and computer models have shown that pollutants from Central American biomass burning can influence air quality and climate in the United States.

A NASA-funded study published in the July 26, 2006 Journal of Geophysical Research-Atmospheres found that during April-May 2003, large amounts of smoke, which include aerosols -- tiny particles suspended in the air -- from biomass burning in the Yucatan Peninsula and southern Mexico reached Texas, Oklahoma, and other areas in the southeastern United States.

The smoke plumes degraded visibility and air quality in coastal regions along the Gulf of Mexico and resulted in the greatest concentration of small particulate matter in southern Texas since 1998. By blocking incoming sunlight, the smoke plumes also cooled surface air temperatures over land. But higher in the atmosphere the smoke absorbed solar radiation and warmed temperatures. This created a circulation pattern that trapped smoke aerosols in the lower atmosphere, worsening air quality.

The researchers used a newly developed computer model to simulate the transport and effects of smoke in the atmosphere and on the Earth's surface. The model couples aerosol properties with meteorology and uses hourly smoke emission data from the NASA-led Fire Locating and Monitoring of Burning Emissions (FLAMBE) project. FLAMBE is a joint effort by NASA, the U.S. Navy, the National Oceanic and Atmospheric Administration and university partners to develop smoke aerosol forecasting models for the benefit for the global weather community.

"Although this computer model is not currently used in air-quality and weather forecasting, it is superior to other models for this purpose because it explicitly accounts for the diurnal variation of smoke emission from biomass burning fires and the radiative impacts of aerosols so that their impact on meteorology can be studied," said study co-author Sundar Christopher of the University of Alabama, Huntsville, Ala.

Comparisons with ground-based observations and imagery from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua Earth Observing System satellites showed that the model accurately simulated the impact of smoke on air temperature and the amount of sunlight absorbed and scattered through the atmosphere.

MODIS data was particularly useful in determining how aerosols from the Central American fires affected the amount of sunlight passing through the atmosphere, which can impact surface and atmospheric temperatures. "MODIS data allows us to capture the meteorological impacts of smoke and aerosols, especially important during the tropical dry season each spring when biomass burning peaks and pollutants are transported to the United States," said Christopher.

Smoke particles and aerosols scatter incoming sunlight while black carbon aerosols absorb solar radiation, affecting the atmospheric temperature profile. In turn, this alters evaporation and cloud formation. Smoke particles also often act as cloud condensation nuclei -- small particles on which water vapor condenses and forms clouds -- influencing the formation and distribution of rainfall. When combined with certain weather patterns, these aerosols can also have a significant impact on local and regional air quality according to the study.

This work demonstrated a new capability to improve air quality and climate forecasts, but researchers need to learn more about how smoke and aerosols impact clouds. "New satellite data, including that from the joint NASA and French Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation satellite, should help us better understand cloud microphysical processes and how aerosols impact cloud formation," said Christopher. Combining this information with improved computer models will help scientists better understand the role of smoke and aerosols on the climate to improve forecasts, even when the pollutant source is thousands of miles away.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/vision/earth/environment/central_am_fires.html

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>