Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First major study of mammalian 'disorderly' proteins

11.10.2006
St. Jude technique for producing cell extracts will help lead to studies of the roles these molecules play in both normal functions and in disease

Investigators at St. Jude Children's Research Hospital turned up the heat on "disorderly" proteins and confirmed that most of these unruly molecules perform critical functions in the cell. The St. Jude team completed the first large-scale collection, investigation and classification of these so-called intrinsically unstructured proteins (IUPs), a large group of molecules that play vital roles in the daily activities of cells.

The new technique for collecting and identifying IUPs is important because although scientists have been aware of the existence of flexible proteins for many years, they have only recently realized that these molecules play major biological roles in the cell, according to Richard Kriwacki, Ph.D., an associate member of the St. Jude Department of Structural Biology. Moreover, he said, previous work by other researchers suggested that a large proportion of IUPs in mammalian cells play key roles in transmitting signals and coordinating biochemical and genetic activities that keep the cell alive and functioning. Kriwacki is senior author of a report on this work that appears in the prepublication online issue of Journal of Proteome Research.

"Until now there was no way to separate IUPs in large numbers from the more structured proteins and confirm their roles in the cell," Kriwacki said. "Our new technique selectively concentrates the IUPs that are involved in regulating functions in the cell and transmitting signals within them."

Unlike the classic description of proteins described in science textbooks, IUPs are not completely locked into rigid, 3-D shapes that determine their function in the cell. Instead, IUPs have varying amounts of flexibility within their sometimes spaghetti-like structures that is critical for function. For example, one protein named p27 initially looks like a SlinkyTM toy. However, when p27 goes to work, it puts a vise-like grip on an enzyme that otherwise would promote uncontrolled cell division.

The St. Jude team developed a technique that uses heat to isolate IUPs in large, purified quantities from extracts of a standard type of cultured mouse cells called NIH3T3 fibroblasts. The IUPs were resistant to the heat, unlike more structured proteins, which fell apart. Based on these studies, the investigators were able to classify all proteins into one of three categories: IUPs; intrinsically folded proteins (IFPs, i.e., fully folded into specific shapes); or mixed ordered or disordered proteins (MPs), which have both structured and unstructured parts.

"This work further illustrates that the disorderliness of IUPs isn't just a curiosity," said Charles Galea, Ph.D., a postdoctoral fellow in Kriwacki's lab. "This characteristic is a fundamental part of how these proteins work. So determining their exact nature, including the parts that are disordered, is an important part of understanding how they work. This is especially important in the case of IUPs linked to cancer and other diseases." The paper's first author, Galea, did much of the work on this project.

Bonnie Kourvelas | EurekAlert!
Further information:
http://www.stjude.org

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>