Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Naked mole-rat unfazed by oxidative stress

11.10.2006
The long-lived naked mole-rat shows much higher levels of oxidative stress and damage and less robust repair mechanisms than the short-lived mouse, findings that could change the oxidative stress theory of aging.

The new study comparing the naked mole-rat, which has a life span of 28 years, and the mouse, which has a lifespan of three years, will be presented Oct. 8 at The American Physiological Society conference, Comparative Physiology 2006: Integrating Diversity. The results fly in the face of the oxidative stress theory of aging, which holds that damage caused by oxidative stress is a significant contributor to the aging process.

Under this theory, naked mole-rats should be better at preventing or repairing oxidative stress than their much shorter-lived cousin, the mouse. The study, "High oxidative damage levels in the longest-living rodent, the naked mole-rat," was done by Blazej Andziak and Rochelle Buffenstein, of The City College of New York, Timothy P. O'Connor, of Weill Medical College of Cornell University, and Asish P. Chaudhiri and Holly Van Remmen of the University of Texas Health Science Center, San Antonio. The study was presented during a poster session on October 8.

Don't toss the oxidative stress theory of aging out the window just yet, but prepare to modify it, said Buffenstein, the senior author. Her team suspects that the naked mole-rat's longevity stems from its ability to defend against acute bouts of oxidative stress. That is, the kind of oxidation that happens because of an unusual occurrence rather than the kind that happens as a result of normal aerobic respiration.

For example, when hydrogen peroxide is added to a culture containing naked mole-rat fibroblast cells, they remain viable and appear to repair the acute damage more rapidly than shorter-lived animals, explained Buffenstein.

What is old age?

We know that all organisms age and die. It's such an inevitable course of events that most of us spend more time thinking about how to hide the wrinkles and gray hair than we do about what our cells are actually doing to usher us to the end. Physiologists are looking at molecules and cells to understand this process.

One way to look at aging is to compare closely related organisms with different life spans. That's why it made sense to compare mole-rats and mice: They're the same size and they're rodents, but the mole-rat lives to 28 years, about nine-times longer than the mouse.

"Mole-rats must have something happening at the biochemical level to allow them to do this," said Andziak, the study's lead author. Specifically, he wanted to see if oxidative stress could explain the difference.

Oxidative stress occurs during metabolism when oxygen (O2) splits into single oxygen atoms, known as free radicals. These oxygen atoms may circulate by themselves, or combine with other atoms and molecules to form reactive oxygen species (ROS). ROS can damage DNA, lipids and proteins thus impairing normal cellular function. Antioxidants help to neutralize ROS, thus restricting the potential of ROS to damage biological molecules.

Mole-rat has more oxidative stress

The study compared two-year-old naked mole-rats to four-month-old mice. The researchers chose those ages so that the animals would be equivalent ages relative to their maximum lifespans, Andziak said.

First, the researchers compared the ratio of reduced glutathione, an antioxidant, to oxidized glutathione. As the body uses up its reduced glutathione to fight oxidative stress, the pool of oxidized glutathione increases. This ratio of reduced to oxidized glutathione is thus an indicator of oxidative stress: the greater the ratio, the less oxidative stress has occurred. The oxidative stress theory predicts that in naked mole-rats this ratio will be higher than in mice.

When the researchers measured this ratio in the liver, they found that the opposite was true. Mole-rats had less reduced glutathione and thus a lower ratio, indicating the mole-rat experienced much more oxidative stress. These results fit with the findings of a previous study in which Andziak found that naked mole-rats did not have superior antioxidant capacity when compared to mice. Mole-rats had much lower activity of the ubiquitous antioxidant enzyme, cellular glutathione peroxidase.

Mole-rat shows greater oxidative damage

The researchers next looked at how much damage the oxidation had caused. It is possible, they reasoned, that the mole-rat suffers greater oxidative stress, but its physiology had somehow prevented damage from occurring.

The researchers measured oxidative damage in lipids, DNA and proteins and found that naked mole-rats showed much greater levels of damage to each of these biological molecules, in all tissues assayed, when compared to mice. The study found multiple signs of lipid damage: The level of isoprostanes found in the urine was 10 times higher in the naked mole-rat, the level of malondialdehyde in liver tissue was twice as high and isoprostane levels in heart tissue was two-and-a-half times the level of the mice.

The researchers found significantly more protein damage in the kidney and in the heart. DNA damage was greater in the kidney and liver.

"All of the classical measures of oxidative stress are higher in the mole-rat," Andziak concluded. "Given that naked mole-rats live an order of magnitude longer than predicted based on their body size, our findings strongly suggest that mechanisms other than attenuated oxidative stress may explain the impressive longevity of this species."

Next steps

The next step is to determine how the mole-rats manage to live with the damage caused by oxidative stress. Buffenstein said she suspects that the mole-rat is able to fend off the occasional oxidative insult that can occur, and that may be more important than what happens with the steady-state levels of oxidative stress that result from normal metabolic activity.

Buffenstein theorizes that the naked mole-rats in her laboratory suffer higher levels of oxidative stress than they would in their natural underground habitat, where they encounter much lower levels of oxygen. But this exposure at an early age may provide some protection against acute oxidative stress and may be of considerable importance in their resistance to bursts oxidative stressors throughout their lives, she said.

"The naked mole-rat, with its surprisingly long lifespan and remarkably delayed aging, seems like the perfect model to provide answers about how we age and how to retard the aging process," Buffenstein said. "This animal may one day provide the clues to how we can significantly extend life."

Christine Guilfoy | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>