Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New hominid species may be early version of Homo sapiens

11.10.2006
In 2003, when fossil remains were uncovered in Liang Bua Cave on the Indonesian island of Flores, the discoverers dubbed the remains Homo floresiensis, a new hominid species.

But in a new study, published online October 9, 2006 in The Anatomical Record, the official journal of the American Association of Anatomists, researchers suggest that the remains are, in fact, a Homo sapiens with microcephaly, an abnormally small head. The study is available via Wiley InterScience at http://www.interscience.wiley.com/journal/ar.

The main specimen of the remains, dated at about 18,000 years ago, consists of a skull and partial skeleton from a dentally adult individual (LB1). Using femur length to extrapolate height, the stature of the skeleton was estimated to be 106 cm. Other notable features were the absence of a chin in the jawbone and a very small cranial capacity. In addition to LB1, fragments of eight other individuals were found, along with advanced stone tools. The initial conclusion was that H. floresiensis was a new species, a dwarf derived from Home erectus.

In the current article, Professor Robert D. Martin of The Field Museum in Chicago, IL, and colleagues painstakingly analyze the anatomy of the remains in order to put forth the case that they are H. sapiens that had suffered from some kind of pathology. Although the original paper following the discovery dismissed the idea of microcephaly because the skeletal features did not seem to fit with this condition, the authors note that the skeleton displays many features of syndromes of microcephaly in modern man, of which there are more than 400 types often associated with severe short stature. They note that whatever condition afflicted the individual would not have prevented survival to adulthood, which is entirely possible with certain forms of microcephaly. According to their analysis, if the height, body mass, head circumference, and other anatomical anomalies attributed to H. floresiensis were compared to modern human standards, the result would be a believable, although malformed, individual. "All of these abnormalities taken together would lead to diagnosis of a severe short stature with microcephaly syndrome, although data are not sufficient to match this to a specific known syndrome," the authors state. They also point out that all microcephaly syndromes typically derive from an autosomal recessive gene and can easily recur in a small, inbred population, which would explain the presence of more than one specimen on an isolated island. In addition, they analyze several microcephalic syndromes that could be applied to the LB1 skull. "We find that this group of syndromes shares several features with the LB1 fossil, including very similar small stature and head size, a small and receding jaw, and dental anomalies," they write.

With regard to the stone tools found near the specimens, the authors note that they "clearly belong to types that are consistently associated with Homo sapiens and have not previously been associated with H. erectus or any other early hominid." In fact, they find it questionable whether H. erectus ever made his way to Flores, as the main evidence for his arrival, namely stone tools found in another location but dated much earlier, is equivocal. The authors conclude that "the features of LB1 best support the interpretation that it is a pathological, microcephalic specimen of Homo sapiens."

David Greenberg | EurekAlert!
Further information:
http://www.interscience.wiley.com/journal/ar

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>