Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New hominid species may be early version of Homo sapiens

11.10.2006
In 2003, when fossil remains were uncovered in Liang Bua Cave on the Indonesian island of Flores, the discoverers dubbed the remains Homo floresiensis, a new hominid species.

But in a new study, published online October 9, 2006 in The Anatomical Record, the official journal of the American Association of Anatomists, researchers suggest that the remains are, in fact, a Homo sapiens with microcephaly, an abnormally small head. The study is available via Wiley InterScience at http://www.interscience.wiley.com/journal/ar.

The main specimen of the remains, dated at about 18,000 years ago, consists of a skull and partial skeleton from a dentally adult individual (LB1). Using femur length to extrapolate height, the stature of the skeleton was estimated to be 106 cm. Other notable features were the absence of a chin in the jawbone and a very small cranial capacity. In addition to LB1, fragments of eight other individuals were found, along with advanced stone tools. The initial conclusion was that H. floresiensis was a new species, a dwarf derived from Home erectus.

In the current article, Professor Robert D. Martin of The Field Museum in Chicago, IL, and colleagues painstakingly analyze the anatomy of the remains in order to put forth the case that they are H. sapiens that had suffered from some kind of pathology. Although the original paper following the discovery dismissed the idea of microcephaly because the skeletal features did not seem to fit with this condition, the authors note that the skeleton displays many features of syndromes of microcephaly in modern man, of which there are more than 400 types often associated with severe short stature. They note that whatever condition afflicted the individual would not have prevented survival to adulthood, which is entirely possible with certain forms of microcephaly. According to their analysis, if the height, body mass, head circumference, and other anatomical anomalies attributed to H. floresiensis were compared to modern human standards, the result would be a believable, although malformed, individual. "All of these abnormalities taken together would lead to diagnosis of a severe short stature with microcephaly syndrome, although data are not sufficient to match this to a specific known syndrome," the authors state. They also point out that all microcephaly syndromes typically derive from an autosomal recessive gene and can easily recur in a small, inbred population, which would explain the presence of more than one specimen on an isolated island. In addition, they analyze several microcephalic syndromes that could be applied to the LB1 skull. "We find that this group of syndromes shares several features with the LB1 fossil, including very similar small stature and head size, a small and receding jaw, and dental anomalies," they write.

With regard to the stone tools found near the specimens, the authors note that they "clearly belong to types that are consistently associated with Homo sapiens and have not previously been associated with H. erectus or any other early hominid." In fact, they find it questionable whether H. erectus ever made his way to Flores, as the main evidence for his arrival, namely stone tools found in another location but dated much earlier, is equivocal. The authors conclude that "the features of LB1 best support the interpretation that it is a pathological, microcephalic specimen of Homo sapiens."

David Greenberg | EurekAlert!
Further information:
http://www.interscience.wiley.com/journal/ar

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>