Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Sewer gas' induces suspended animation without decreasing blood pressure

11.10.2006
Hydrogen sulfide gas can induce a state of suspended animation in mice while maintaining normal blood pressure, a finding that researchers hope will one day help treat critically-ill patients.
Hydrogen sulfide gas, sometimes called sewer gas, produces a noxious odor often described as a rotten egg smell. The gas occurs naturally in swamps, springs and volcanoes. While usually harmless, it can be toxic if breathed in sufficient quantity, explained Gian Paolo Volpato, one of the study's authors.

The study, entitled "Cardiovascular response to breathing hydrogen sulfide in a murine model: separating the effects of body temperature," will be presented Sunday, Oct. 8, at The American Physiological Society conference, "Comparative Physiology 2006: Integrating Diversity," in Virginia Beach, VA, Oct. 8-11. Gian Paolo Volpato, Robert J. Searles, Marielle Scherrer-Crosbie, Oleg V. Evgenov, Kenneth D. Block, Fumito Ichinose and Warren M. Zapol of the Massachusetts General Hospital in Boston carried out the study.

The research built on a 2005 study from the University of Washington in Seattle and the Fred Hutchinson Cancer Research Center, which found that when mice breathed the gas, they went into a hibernation-like state. Their metabolic rate dropped by 90% and their body temperature decreased to nearly the temperature of the surrounding air.

New research looks at cardiovascular effects

"We wanted to confirm the Seattle study and record the effects the gas has on blood pressure, heart rate, respiratory rate and the activity level of the mice," Volpato explained. They administered 80 parts per million of hydrogen sulfide gas to their mice and found their:

  • heart rate fell from 500 beats per minute to 200 beats per minute
  • respiration rate decreased from 120 breaths to 25 breaths per minute
  • core body temperature fell from 38° C to 30° C
  • activity level fell dramatically, moving only when the researchers touched them or shook their chambers

After the mice returned to breathing normal air, they quickly returned to normal. These changes were expected, based on the Seattle research. But the physiologists found something they did not expect. Normally, as oxygen consumption goes down and heart rate decreases, blood pressure decreases also. Since the heart rate of the mice fell by more than 50%, the researchers expected blood pressure to fall, but it didn't, Ichinose said.

Surprisingly, blood pressure stays normal

"We were surprised to find that blood pressure didn't change, even though the mouse's heart beat fell to 200 beats per minute," Volpato said. "We don't know why, but it may be a physiological response to maintain body temperature," Ichinose added.

An animal's blood pressure needs to remain at a certain level to ensure blood reaches the vital organs. Normally, a mouse with that heart rate would have very low blood pressure and would be close to death. But these mice returned to normal two hours after the gas was discontinued.

The researchers then repeated the experiment with a new set of mice, but this time they raised the "room" temperature from 27° C (81° F) used in the first experiment, to 35° C (95° F). They found that heart rate and respiration rate still fell significantly, but not as much as the first experiment when the room was cooler.

They also found that in the warmer room, blood pressure increased, whereas it had remained unchanged in the colder environment. The researchers also measured the cardiac output of the mice in this experiment by echocardiography, and found that stroke volume, that is, the amount of blood the mice pumped with each beat, was unchanged by the gas. However, total cardiac output decreased because the heart was beating much slower.

Could help surgery patients

"These findings demonstrate that mice that breathe 80 parts per million of hydrogen sulfide become hypothermic and decrease their respiration rate, heart rate and cardiac output without affecting stroke volume or mean arterial pressure," the authors said.

This line of research could have a variety of helpful applications, including sustaining the function of organs of critically ill people, Ichinose said. It may also be possible to use the finding for patients undergoing surgery. This would be an advance, because anesthesia usually causes blood pressure to drop.

"Currently, hypothermia is the only proven way to decrease metabolic rate and confer some protection when blood flow to the organs is impaired or intentionally reduced, such as during complex cardiac surgery," Ichinose said. "However, hypothermia has some adverse effects, including depressing cardiovascular functions and blood clotting. If we can figure out how hydrogen sulfide reduces metabolic rate without depressing myocardial function, we may be able to reduce metabolism and protect organs without using hypothermia."

One caveat to this research so far is that hydrogen sulfide might produce this result in mice and other naturally hibernating species much more readily than other species, including humans, Ichinose said. The researchers intend to extend the study to bigger animals, such as sheep and pigs to see if they have the same cardiac and hemodynamic reaction. "If the same thing happens in those species that would be much more interesting," Ichinose said.

Christine Guilfoy | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>