Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Sewer gas' induces suspended animation without decreasing blood pressure

11.10.2006
Hydrogen sulfide gas can induce a state of suspended animation in mice while maintaining normal blood pressure, a finding that researchers hope will one day help treat critically-ill patients.
Hydrogen sulfide gas, sometimes called sewer gas, produces a noxious odor often described as a rotten egg smell. The gas occurs naturally in swamps, springs and volcanoes. While usually harmless, it can be toxic if breathed in sufficient quantity, explained Gian Paolo Volpato, one of the study's authors.

The study, entitled "Cardiovascular response to breathing hydrogen sulfide in a murine model: separating the effects of body temperature," will be presented Sunday, Oct. 8, at The American Physiological Society conference, "Comparative Physiology 2006: Integrating Diversity," in Virginia Beach, VA, Oct. 8-11. Gian Paolo Volpato, Robert J. Searles, Marielle Scherrer-Crosbie, Oleg V. Evgenov, Kenneth D. Block, Fumito Ichinose and Warren M. Zapol of the Massachusetts General Hospital in Boston carried out the study.

The research built on a 2005 study from the University of Washington in Seattle and the Fred Hutchinson Cancer Research Center, which found that when mice breathed the gas, they went into a hibernation-like state. Their metabolic rate dropped by 90% and their body temperature decreased to nearly the temperature of the surrounding air.

New research looks at cardiovascular effects

"We wanted to confirm the Seattle study and record the effects the gas has on blood pressure, heart rate, respiratory rate and the activity level of the mice," Volpato explained. They administered 80 parts per million of hydrogen sulfide gas to their mice and found their:

  • heart rate fell from 500 beats per minute to 200 beats per minute
  • respiration rate decreased from 120 breaths to 25 breaths per minute
  • core body temperature fell from 38° C to 30° C
  • activity level fell dramatically, moving only when the researchers touched them or shook their chambers

After the mice returned to breathing normal air, they quickly returned to normal. These changes were expected, based on the Seattle research. But the physiologists found something they did not expect. Normally, as oxygen consumption goes down and heart rate decreases, blood pressure decreases also. Since the heart rate of the mice fell by more than 50%, the researchers expected blood pressure to fall, but it didn't, Ichinose said.

Surprisingly, blood pressure stays normal

"We were surprised to find that blood pressure didn't change, even though the mouse's heart beat fell to 200 beats per minute," Volpato said. "We don't know why, but it may be a physiological response to maintain body temperature," Ichinose added.

An animal's blood pressure needs to remain at a certain level to ensure blood reaches the vital organs. Normally, a mouse with that heart rate would have very low blood pressure and would be close to death. But these mice returned to normal two hours after the gas was discontinued.

The researchers then repeated the experiment with a new set of mice, but this time they raised the "room" temperature from 27° C (81° F) used in the first experiment, to 35° C (95° F). They found that heart rate and respiration rate still fell significantly, but not as much as the first experiment when the room was cooler.

They also found that in the warmer room, blood pressure increased, whereas it had remained unchanged in the colder environment. The researchers also measured the cardiac output of the mice in this experiment by echocardiography, and found that stroke volume, that is, the amount of blood the mice pumped with each beat, was unchanged by the gas. However, total cardiac output decreased because the heart was beating much slower.

Could help surgery patients

"These findings demonstrate that mice that breathe 80 parts per million of hydrogen sulfide become hypothermic and decrease their respiration rate, heart rate and cardiac output without affecting stroke volume or mean arterial pressure," the authors said.

This line of research could have a variety of helpful applications, including sustaining the function of organs of critically ill people, Ichinose said. It may also be possible to use the finding for patients undergoing surgery. This would be an advance, because anesthesia usually causes blood pressure to drop.

"Currently, hypothermia is the only proven way to decrease metabolic rate and confer some protection when blood flow to the organs is impaired or intentionally reduced, such as during complex cardiac surgery," Ichinose said. "However, hypothermia has some adverse effects, including depressing cardiovascular functions and blood clotting. If we can figure out how hydrogen sulfide reduces metabolic rate without depressing myocardial function, we may be able to reduce metabolism and protect organs without using hypothermia."

One caveat to this research so far is that hydrogen sulfide might produce this result in mice and other naturally hibernating species much more readily than other species, including humans, Ichinose said. The researchers intend to extend the study to bigger animals, such as sheep and pigs to see if they have the same cardiac and hemodynamic reaction. "If the same thing happens in those species that would be much more interesting," Ichinose said.

Christine Guilfoy | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>