Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study recommends strategies for distributing flu vaccine during shortage

When faced with potential vaccine shortages during a flu outbreak, public health officials can turn to a new study by mathematical biologists at The University of Texas at Austin to learn how to best distribute the vaccine.

The scientists used contact network epidemiology to model various vaccine distribution strategies, including the United States Centers for Disease Control strategy of targeting high-risk groups, like infants, the elderly and people with health complications. They also tested the idea of targeting school children, who are critical vectors in moving diseases through communities.

They found that the best vaccine distribution strategy depends on the contagiousness of the flu strain.

"If we only have a limited flu vaccine supply, the best distribution strategy depends on the contagiousness of the strain," says Dr. Lauren Ancel Meyers, assistant professor of integrative biology. "We can more effectively control mildly contagious strains by vaccinating school children, while we can more effectively control moderately and highly contagious strains by vaccinating high-risk groups."

If there is no information available about the contagiousness of a flu strain or if the vaccines are only available after the outbreak is underway, the study recommends prioritizing vaccines for those people in high-risk groups who can experience the greatest complications due to the disease.

Meyers and her colleagues based their contact network models on information from Vancouver, British Columbia. While other mathematical models of disease transmission assume all members of a community are equally likely to infect each other, contact network models take the relationships among people into account.

Meyers says this allowed them to make more detailed and reliable predictions about infectious disease transmission.

"Given that vaccine shortages are likely (as occurred at the start of the 2004 flu season) and that we are unlikely to have a large vaccine supply if a new strain of pandemic flu emerges in human populations, this study offers quantitatively grounded recommendations for public health officials who may be forced to make rapid life-and-death decisions," says Meyers.

Lauren Ancel Meyers | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>