Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AIDS study challenges conventional treatment guidelines for HIV patients

27.09.2006
National study published in curent issue of JAMA

A newly published study by investigators at the Center for AIDS Research at Case Medical Center, led by Benigno Rodríguez, MD, along with a nationwide team of AIDS/HIV experts, strongly challenges conventional thinking about the role of measurements of the amount of HIV particles in the blood as a method of predicting a patient's ability to fight off the disease. The study, published in the current issue of JAMA (Journal of the American Medical Association), indicates that the amount of HIV in a patient's blood (commonly known as the viral load) is much less reliable as a tool for determining the rate at which he or she will lose infection-fighting CD4 cells than previously thought.

HIV targets CD4 cells, a type of white blood cell, and as they decline after HIV infection, the complications that characterize the Acquired Immunodeficiency Syndrome (AIDS) become more common. These study results showed that the viral load explains only about 5% of the variation from person to person in the rate of CD4 cell loss. Thus, CD4 depletion cannot be viewed as a simple consequence of the amount of virus circulating in the blood.

"The results of this nationwide study may have profound implications in our understanding of how HIV causes disease and in our approach to the management of HIV-infected patients," says Dr. Rodriguez, infectious disease specialist at the Case Medical Center, a partnership of University Hospitals and Case Western Reserve University School of Medicine. "We hope that this study will provide impetus for a more thorough understanding of the mechanisms of HIV-induced damage to the immune system and for the design of strategies to block those mechanisms."

In the study, entitled Predictive Value of Plasma HIV RNA Level on Rate of CD4 T Cell Decline in Untreated HIV infection, Dr. Rodríguez and his colleagues report the results of analyses conducted on two large cohorts of HIV-infected patients who were not receiving treatment for HIV, totaling more than 2,800 individuals. The first cohort consisted of patients included in three data sources: a) four sites of the Centers for AIDS Research Network of Integrated Clinical Systems (CNICS), a database of real-time clinical care and laboratory data; b) the San Francisco Men's Health Study (SFMHS) and the Research in Access to Care for the Homeless Cohort (REACH). This cohort included approximately 12% female and 35% non- Caucasian participants. The second cohort, which the investigators used to validate their findings in the first group, included participants in the Multicenter AIDS Cohort Study, a long-standing federally funded study composed largely of Caucasian men who have sex with men.

The investigators sought to estimate how much of the person-to-person variation in the rate of CD4 cell loss could be accounted for on the basis of each patient's initial viral load, in an attempt to reproduce more closely the situation that a physician would encounter in clinical practice, where a patient presents with an initial set of laboratory results and the clinician must try to predict how quickly that person's CD4 cell count will reach the danger level at which treatment for HIV becomes most critical. Current clinical practice, based on previous work from other groups, is to focus on both the current CD4 count and the viral load to estimate how rapidly a person's CD4 cell count will decrease. This approach is based on comparisons of the average rate of CD4 cell loss among groups of patients with roughly similar viral loads, which indicate that generally speaking, patients with higher viral loads will tend to experience more rapid CD4 cell loss than patients with lower viral loads. Until now, however, there had been no attempt to quantify how well this observation held when considering the estimated rate of CD4 cell loss for each individual patient.

Using sophisticated statistical modeling, the researchers found that only 4-6% of an individual patient's CD4 cell loss rate can be explained by his or her presenting viral load. Moreover, the results were remarkably similar when the analyses were reproduced separately in each of the two cohorts, and changed only minimally when the investigators considered the possible effect of errors in the measurement of the CD4 cell count and the HIV viral load.

These results represent a shift in the paradigm that the rate of CD4 cell loss in a given HIV-infected individual can be accurately predicted by his or her viral load. Predicting disease progression is crucial in the treatment of HIV-positive people, such as in making the decision as to when it is best for starting antiretroviral therapy. Current treatment guidelines, while diminishing its importance, continue to include HIV viral load as one element in making decisions regarding when to begin antiretroviral therapy. Antiretroviral therapy, also known as HAART, is credited with saving millions of lives. However, potent side effects and issues of drug resistance, often cause doctors and patients to defer starting the medications, until it becomes medically necessary.

In addition to the clinical ramifications, the findings suggest that HIV-associated CD4 depletion cannot be thought of as a mere consequence of the amount of virus circulating in the blood. Instead, the findings suggest rather more complex scenarios of disease progression, and hint at indirect processes though which HIV can induce damage to the immune system, which cannot be adequately captured by measuring HIV levels in the blood.

Alicia Reale | EurekAlert!
Further information:
http://www.uhhs.com
http://casemed.case.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>