Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Groundbreaking study by Field Museum scientists explains mane variation in lions

27.09.2006
New research published in Journal of Zoology

An article appearing in the current issue of the Journal of Zoology sheds light on several longstanding misconceptions regarding the controversial topic of mane variability among wild lions. This comprehensive scientific assessment of mane variation--including "manelessness"--is a first and took nearly seven years to complete.


The equatorial region of East Africa (Kenya) has long maintained a native lion population exhibiting the greatest range of mane variation known on the planet. While plenty of poorly, modestly and fully maned lions still occur in the eastern, southern and northern regions of that country, lions with truly exceptional manes from the mountain plateaus have fallen victim in recent years to persistent eradication efforts by animal control units. Safeguarding livestock interests near the boundaries of these limited highland protected areas has become a priority in those districts, despite the lions recent elevation to the status of a "threatened" species in that country. Credit: Color plate by Velizar Simeonovski

According to the overall findings of the study, wild lions generally develop manes in accordance with local climate regimes. In Equatorial east Africa, climate is determined by elevation. Thus lions with the most profuse manes occur at the upper limit of their altitudinal range, while similar aged males in the lowest and warmest environments like Tsavo typically carry only modest or scanty manes.

However, the authors also found, paradoxically, that the majority of lions in regions like the greater Tsavo ecosystem (which is famed for its "maneless" lions), did appear to acquire respectable manes, eventually, contrary to most recent popular and scientific accounts of the lions from that region.

"We knew about the climate/elevation correlation since we were the first to publish those preliminary results in GEO 2001, but this new development really threw us for a loop," says Tom Gnoske, of the Field Museum's Zoology Department and senior author of the paper. "However once we analyzed all of the statistical data we found a very strong correlation linking increased age and continued mane development, a significant variable ignored by all previous authors."

Statistical data from this study demonstrates that the onset of mane development in lions living below an altitude of 800 meters on or near the equator is delayed, and that the "rate" or speed at which a mane develops in lions from those regions is slower on average than that of the more familiar lions living in the cooler, higher altitudes of the greater Serengeti ecosystem and elevated plains extending northward, such as the Athi/Kapiti Plains and beyond. According to the researchers, in environments like Tsavo that have especially high minimum temperatures throughout the year, lions in their reproductive prime--from the approximate ages of five thru seven years old--usually possess only very marginally developed manes, while most of the more thoroughly maned lions in those same territories were already well past their breeding prime.

Furthermore, the researchers found compelling evidence indicating that manes of lions from all populations continue to develop long after a lion has achieved sexual maturity, such that the best-maned lions in any region are typically of an older age class. "Usually lions are well past their breeding prime when they carry the most extensive and often darkest manes of their lives," explains Kerbis Peterhans Adjunct curator of Mammals at The Field Museum, Professor at Roosevelt University, and co-author of the study.

This finding stands in contrast to recent studies arguing that female-driven sexual selection in the species Panthera leo is focused on males with more extensively developed and darker manes. "Up until now, it has been incorrectly assumed that lions typically achieve the full extent of mane development by the time they reach four to five years of age," Kerbis Peterhans adds. "This phenomenon carries across the board to all African lion populations, including recently extinct ones, based on the data from our rigorous review of museum specimens."

The team found no evidence that rainfall, season, habitat, soil nutrients, nutrition, lion density, prey density or biomass were correlated with mane-growth patterns, but established that increased humidity appears to have a negative impact on mane growth in especially warm environments. Recent theories, linking manelessness in Tsavo's lions to male pattern baldness (due to excessive testosterone and aggression), are not supported by this study.

"There is a lot of dogma to overcome, and many important aspects of lion-hood, including behavioral repertoires and survival strategies adopted by lions in lesser known environments, have yet to be documented," explains Gastone Celesia, a retired surgeon and medical researcher based in the Chicagoland area and co-author of the paper. "Much of the current scientific thinking and most of the misconceptions about lion behavior and morphology stem from relatively few studies in select environments and habitats. If lions are to survive as a species, the full range of habitats, morphological variation and behavioral strategies must also survive and be maintained. Richer and more productive habitats are being co-opted, taken over by pastoralists and agriculturalists every day. It is the poorer habitats (like Tsavo) that may provide hope for future lion survival."

The study's authors avoided using captive specimens for their study due to the abundance of variables these animals are subject to, including inbreeding, hybridization and unknown pedigrees, stress, chronic inactivity, and climate-controlled environments. Instead, the authors focused their efforts on the mane condition of two adjacent populations of wild lions that were separated by only elevation, and thus, climate.

Equatorial east Africa was chosen for the study because the greatest range of mane variation occurs there. In fact, both maximum and minimum mane conditions have been documented there historically, and continue to exist today, making it an ideal region for addressing the questions posed by the authors (see Velizar Simeonovski's plate).

This provocative topic was first discussed in a peer reviewed scientific venue in 1833 in this very journal (under its former name): Smee, Capt. W. "On the maneless lion of Gujerat," Proceedings of the Zoological Society of London; part 1, page 140, 1833.

The Journal of Zoology is published by the Zoological Society or London. This study has just been published on the journal's "OnlineEarly" website at http://www.blackwell-synergy.com/toc/jzo/0/0.

Greg Borzo | EurekAlert!
Further information:
http://www.fieldmuseum.org

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>