Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Experimental cancer drugs counter muscle deterioration seen in muscular dystrophy

19.09.2006
Normal muscle function restored in dystrophic mice

Muscle weakness and fiber deterioration seen in muscular dystrophy can be countered by a class of drugs currently under study for their effects against cancer, a Burnham Institute study has found.

The report shed light on the potential use of these drugs, called histone deacetylase inhibitors, in promoting regeneration and repair of dystrophic muscles, thereby countering the progression of the disease, in two different mouse models of muscular dystrophy. Led by Burnham Institute assistant professor Lorenzo Puri, M.D., Ph.D., in collaboration with the Dulbecco Telethon Institute (DTI) of Rome and other colleagues in Italy and at the National Institutes of Health, the study was made available to researchers worldwide by expedited publication at Nature Medicine's website on September 17, 2006.

Puri's team discovered that ongoing treatment with the deacetylase inhibitor Trichostatin A, currently under clinical study for breast cancer, restored skeletal muscle mass and prevented the impaired function characteristic of muscular dystrophies. Importantly, these restored muscles showed an increased resistance to contraction-coupled degeneration--the primary mechanism by which muscle function declines in Duchenne muscular dystrophy and related dystrophies.

Indeed, muscles examined from dystrophic mice treated with Trichostatin A for three months displayed normal tissue architecture, as compared to the muscles examined from untreated, dystrophic mice. Furthermore, dystrophic mice receiving treatment were able to perform physical exercise (e.g. running on a treadmill) similar to normal, non-dystrophic mice.

Muscular dystrophy is a group of more than 30 genetic diseases, characterized by progressive weakness and deterioration of skeletal muscles. All are inherited, caused by a mutation in one of a group of genes responsible for maintaining muscle integrity. Puri's team studied the disease's most common form, Duchenne muscular dystrophy, which affects one in 3,500 male births, according to the National Institute of Neurological Diseases and Stroke. Inheritance is linked to the X chromosome and recessive, so the disease primarily affects boys. Most children with Duchenne muscular dystrophy die in their late teens or early 20s. The disease currently has no cure.

"We have identified a new rationale for treating muscular dystrophy, aimed at correcting the devastating effects of a single flawed gene," said Puri. "This is a significant advance over the use of steroids--currently the only treatment available--which offers palliative relief, often with severe side effects."

"These exciting results, while encouraging, will require extensive investigation to determine whether the effectiveness of these drugs in dystrophic mice will translate into an effective treatment for individuals suffering this disease," cautions Puri, who has devoted over 10 years to the study of muscular dystrophy. "It is difficult to predict how long it will take before these studies will be translated into therapies for human patients."

"Our future studies will focus on understanding precisely how several existing deacetylase inhibitors effect muscle regeneration. We will use this information to identify new compounds with similar or even better efficacy in treating muscular dystrophies."

Puri's research on the effects of deacetylase inhibitors on muscle regeneration was inspired by his previous studies, which started 10 years ago, in collaboration with Dr. Vittorio Sartorelli at NIH, on the biochemical and molecular mechanism regulating the expression of genes that coordinate muscle regeneration. These studies led to the identification of different enzymes (called acetyltransferases and deacetylases) that promote or inhibit the expression of regeneration genes, and have the potential of influencing the efficiency of muscle regeneration.

Nancy Beddingfield | EurekAlert!
Further information:
http://www.burnham.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>