Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calorie restriction in non-human primates may prevent and reduce Alzheimer's disease neuropathology

19.09.2006
New research shows restricting in food intake can help fight disease

A new study directed by Mount Sinai School of Medicine extends and strengthens the research that experimental dietary regimens might halt or even reverse symptoms of Alzheimer's Disease (AD). The study entitled "Calorie Restriction Attenuates Alzheimer's Disease Type Brain Amyloidosis in Squirrel Monkeys" which has been accepted for publication and will be published in the November 2006 issue of the Journal of Alzheimer's Disease, demonstrates the potential beneficial role of calorie restriction in AD type brain neuropathology in non-human primates. Restricting caloric intake may prevent AD by triggering activity in the brain associated with longevity.

"The present study strengthens the possibility that CR may exert beneficial effects on delaying the onset of AD- amyloid brain neuropathology in humans, similar to that observed in squirrel monkey and rodent models of AD," reported Mount Sinai researcher Dr. Pasinetti and his colleagues, who published their study, showing how restricting caloric intake based on a low-carbohydrate diet may prevent AD in an experimental mouse model, in the July 2006 issue of the Journal of Biological Chemistry.

"This new breakthrough brings great anticipation for further human study of caloric restriction, for AD investigators and for those physicians who treat millions of people suffering with this disease" says Giulio Maria Pasinetti, M.D., Ph.D., Professor of Psychiatry and Neuroscience, Director of the Neuroinflammation Research Center at Mount Sinai School of Medicine and lead author of the study. "The findings offer a glimmer of hope that there may someday be a way to prevent and stop this devastating disease in its tracks."

AD is a rapidly growing public health concern with potentially devastating effects. An estimated 4.5 million Americans have AD. Presently, there are no known cures or effective preventive strategies. While genetic factors are responsible in early-onset cases, they appear to play less of a role in late-onset-sporadic AD cases, the most common form of AD.

In this new study, Dr. Pasinetti at Mount Sinai School of Medicine, in collaboration with Dr. Donald Ingram at the Laboratory of Experimental Gerontology, National Institute on Aging, NIH, maintained the Squirrel Monkeys on calorie restrictive or normal diets throughout their entire lifespan until they died of natural causes. The researchers found that ~30% calorie restriction resulted in reduced AD type amyloid neuropathology in the temporal cortex relative to control fed monkeys. The decreased AD type neuropathology correlated with increased longevity of related protein SIRT1, located in the same brain region that influences a variety of functions including aging related diseases.

Collectively, the study suggests that the investigation of calorie restriction in non-human primates may be a valuable approach towards understanding the role of calorie restriction in human AD pathology. The present study strengthens the possibility that calorie restriction may exert beneficial effects in delaying the onset of AD. The findings also elucidate the important relationship between the expression of longevity genes like SIRT1 in calorie restriction dietary regimens and mechanisms associated with the prevention of AD.

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mssm.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

Stagnation in the South Pacific Explains Natural CO2 Fluctuations

23.02.2018 | Earth Sciences

Mat4Rail: EU Research Project on the Railway of the Future

23.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>