Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New study pinpoints unique genetic susceptibility for viral encephalitis

Findings challenge current theory, demonstrate new therapeutic possibilities

The study is being published September 14 in Science X-Press, an advanced, online edition of the journal Science.

In the study, the researchers suggest that herpes simplex encephalitis may reflect a single gene immunodeficiency that confers susceptibility to herpes simplex virus, an idea that contrasts with the prevailing scientific theory of how genes work to make people vulnerable to infections. These new findings, the study added, may apply to other infectious diseases as well.

In the study, scientists focused on blood cells from two French children with a deficiency for UNC-93B, an endoplasmic reticulum protein involved in the recognition of pathogens. When infected with herpes simplex virus-1, the UNC-93B-deficient cells were unable to produce natural interferons alpha, beta, and gamma (IFNs -?/? and -?). Interferons are produced by the immune system to fight infections and tumors.

This deficiency resulted in high rates of herpes simplex virus-1 proliferation and cell death. Assuming these findings extend to neurons, they provide a plausible mechanism for herpes simplex encephalitis.

"We and our colleagues have identified recessive UNC-93B deficiency as a genetic etiology of herpes simplex encephalitis in otherwise healthy patients," said Professor Bruce Beutler, M.D., one of three Scripps Research scientists who contributed to the study. "The discovery of this genetic cause for herpes simplex encephalitis not only broadens our understanding of these types of immunodeficiencies, but also has important therapeutic implications-some of these patients could benefit from recombinant interferon alpha (IFN-?) treatment, just as patients with low levels of naturally occurring interferon gamma (IFN-?) benefit from a similar life-saving approach."

Herpes simplex virus-1 is a common virus that infects about 80 percent of young adults worldwide. Herpes simplex encephalitis, a viral infection of the brain that affects otherwise healthy patients, affects an extremely small percentage of those infected with herpes simplex virus-1: the number of annual cases is two per million people, according to the University of Maryland Medical Center.

Nonetheless, herpes simplex encephalitis, which was first described in 1941, is the most common type of sporadic viral encephalitis in developed countries, accounting for about 10 to 20 percent of all viral encephalitis cases, according to the University of Maryland Medical Center. Before the advent of anti-viral drugs vidarabine in 1973 and acyclovir in 1981, mortality rates reached up to 70 percent. While the introduction of anti-viral treatment has been a boon to patients, brain damage still poses a substantial risk.

"In contrast to most current thinking, we suspected that herpes simplex encephalitis susceptibility could be inherited as a monogenic trait resulting in the specific impairment of immunity to herpes simplex virus-1," Beutler said. "Here we have defined a genetic lesion that is permissive for an infection: a trait that most would regard as quintessentially environmental in cause. It is likely that other mutations will also be found to permit herpes simplex virus encephalitis, and likely that other infectious diseases will ultimately be traced to mutations that affect UNC-93B."

Keith McKeown | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>