Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Round-the-clock monitoring by UH contributes to air quality study

14.09.2006
Solutions to pollution, ozone explored by atmospheric scientists collaborating on TexAQS-II Initiative

University of Houston scientists are joining more than 200 researchers from 60 institutions in the Texas Air Quality Study-II (TexAQS-II), to help alleviate the negative impact of air pollution on public health and economic development.

A scientific investigation into the key air quality issues of the eastern half of Texas, TexAQS-II is an initiative led by the National Oceanic and Atmospheric Administration (NOAA), using $2 million appropriated to the Environmental Protection Agency (EPA), to collect and model data in order to develop a more accurate profile of the region's atmosphere. UH's measurement and modeling programs in the department of geosciences are playing a large role in TexAQS-II, leading the way to create a Gulf Coast Air Quality Model.

With one of the most comprehensive measurement ground sites, UH is home to the Moody Tower Atmospheric Chemistry Facility – one of three super sites that offer the most all-inclusive chemical and meteorological measurement platforms measuring more than 50 variables. During the TexAQS-II initiative, the UH scientists running the Moody Tower facility are collaborating with more than 40 visiting scientists from several different universities and national labs.

As the only ground site of the three super sites, the Moody Tower facility is operational 24 hours a day, seven days a week and offers the most representative sample of what the average person typically breathes in on a daily basis. The other two super sites are NOAA-owned planes and boats, offering observation from the air and water.

"Since we are high up at 18 stories on the roof of UH's Moody Tower dormitory, we can offer a larger footprint of what is actually going on," said Bernhard Rappenglueck, associate professor of atmospheric science at UH. "From up here, we avoid local influences on the ground, such as cars and trucks driving by that would skew results, and can also detect pollutants not just from the Houston area, but even as far away as Mexico."

The Moody Tower vantage point also allows UH scientists to observe and measure the land and sea breeze effects, where during the course of a day aged pollution from the Port of Houston floats to Galveston and then blows back to Houston. The amount and diversity of chemicals measured from this UH super site number in the hundreds, including hydrocarbons from factories burning fossil fuel and from vegetation under environmental stress, carbon monoxide and formaldehyde from vehicle exhaust and a wide range of other harmful elements. The several combinations of these compounds that come together to form ozone, however, receive the most focus from researchers.

"Houston is ripe for ozone," said Barry Lefer, assistant professor of atmospheric science at UH. "Very basically, sunlight, nitrogen oxide and hydrocarbons react to make ozone, and water vapor helps that process along. So, with no short supply of sun and humidity, combined with all the exotic compounds of the chemical industry, Houston is not surprisingly one of the worst with regard to ozone noncompliance levels across the country."

Lefer stresses that the efforts of TexAQS-II will be a good test to see how industry has cleaned up since the first TexAQS initiative six years ago. In this second air quality study, he said, UH scientists are determining what the photochemical processes are, which ones are most important and what the best strategy is to solve the problems.

Along with the myriad measurement tools, gauges and computers on the roof of Moody Tower, weather balloons containing instruments to monitor ozone and other air quality factors are being launched through the end of September and are transmitting data electronically back to labs at UH before parachuting to the ground. From the UH super site, Rappenglueck's students are launching two to six of them each day, while Lefer's graduate students will launch 45 of these weather balloons near various refinery and petrochemical facilities. These balloon launches are a first for Houston, with Lake Charles, La., being the closest until now, and will help with ozone and weather forecasting.

Complementing Lefer and Rappenglueck's Atmospheric Chemistry Measurement Group, UH's modeling and forecasting arm – the Institute for Multi-dimensional Air Quality Studies – will extend the Moody Tower super site measurements by running them through UH atmospheric science professor Daewon Byun's sophisticated computational models to pinpoint what works and what doesn't. See a related release on Byun's recently unveiled ozone forecaster at http://www.uh.edu/admin/media/nr/2006/08aug/082106imaqs_

ozone_forecaster.html.

If Byun's models accurately work to forecast ozone and other air quality conditions with his measurement colleagues' data, then the existing UH super site and balloon efforts can be applied to other sites. However, if the model does not work properly, then Byun can find out what to fix – either on the measurement or modeling side – to perfect the process, such as getting the correct balance of chemistry, emissions and weather measurements.

"The complementary nature of modeling and measurement is key to atmospheric science," Byun said. "One of UH's main goals in the TexAQS-II initiative is for my modeling to extend the measurement efforts of my colleagues so that we can work together to reduce dangerous ozone levels and air pollution."

Lisa Merkl | EurekAlert!
Further information:
http://www.uh.edu

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>