Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human activities are boosting ocean temperatures in areas where hurricanes form

12.09.2006
Rising ocean temperatures in key hurricane breeding grounds of the Atlantic and Pacific oceans are due primarily to human-caused increases in greenhouse gas concentrations, according to a study published online in the September 11 issue of the Proceedings of the National Academy of Sciences (PNAS).

Using 22 different computer models of the climate system, Benjamin Santer and six other atmospheric scientists from the Lawrence Livermore National Laboratory, together with Tom Wigley, Gerald Meehl, and Warren Washington from the Boulder-based National Center for Atmospheric Research (NCAR) and scientists from eight other research centers, have shown that the warming sea surface temperatures (SSTs) of the tropical Atlantic and Pacific oceans over the last century is linked to human activities.

NCAR's primary sponsor is the National Science Foundation.

"We've used virtually all the world's climate models to study the causes of SST changes in hurricane formation regions," Santer says.

Research published during the past year has uncovered evidence of a link between rising ocean temperatures and increases in hurricane intensity. This has raised concerns about the causes of the rising temperatures, particularly in parts of the Atlantic and Pacific where hurricanes and other tropical cyclones form.

Previous efforts to understand the causes of changes in SSTs have focused on temperature changes averaged over very large ocean areas, such as the entire Atlantic or Pacific basins. The new research specifically targets SST changes in much smaller hurricane formation regions.

For the period 1906-2005, the researchers found an 84 percent probability that human-induced factors--primarily an increase in greenhouse gas emissions--account for most of the observed rise in SSTs in the Atlantic and Pacific hurricane formation regions.

"The important conclusion is that the observed SST increases in these hurricane breeding grounds cannot be explained by natural processes alone," says Wigley. "The best explanation for these changes has to include a large human influence."

Hurricanes are complex phenomena that are influenced by a variety of physical factors, such as SSTs, wind shear, water vapor, and atmospheric stability. The increasing SSTs in the Atlantic and Pacific hurricane formation regions are not the sole determinant of hurricane intensity, but they are likely to be one of the most significant influences.

"It is important to note that we expect global temperatures and SSTs to increase even more rapidly over the next century," Wigley says.

According to Santer, "In a post-Katrina world, we need to do the best job we possibly can to understand the complex influences on hurricane intensity, and how our actions are changing those influences."

David Hosansky | EurekAlert!
Further information:
http://www.ucar.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts

08.12.2016 | Power and Electrical Engineering

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>