Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studies find general mechanism of cellular aging

07.09.2006
Suggest tumor suppressor gene is key

Three separate studies confirm a gene that suppresses tumor cell growth also plays a key role in aging. The researchers found increasing concentration, or expression, of the gene p16INK4a in older cells; these aging cells worked poorly compared to young cells and remembered their "age" even when transferred from old mice to young mice. The cells of mice bred without the gene showed less sluggishness as the animals aged and continued to function in a manner more similar to cells from younger mice.

Teams from the medical schools at the University of North Carolina at Chapel Hill, University of Michigan and Harvard University observed similar results in pancreatic islet cells and brain and blood stem cells.

The results show disparate cell types share a common aging mechanism and suggest that aging-related diseases such as diabetes result from a failure of cell growth, said Dr. Norman E. Sharpless, co-author on the three studies and an assistant professor of medicine and genetics at the UNC School of Medicine. "The studies indicate that certain stem cells lose their ability to divide and replace themselves with age as the expression of p16INK4a increases," said Sharpless, a member of the UNC Lineberger Comprehensive Cancer Center.

The trio of reports are published online Sept. 6 in the journal Nature. The three research teams are from the medical schools at UNC, the University of Michigan and Harvard University.

The UNC study focused on p16INK4a effects on the function of pancreatic islet cells. Islet cells are responsible for insulin production and secretion. Because p16INK4a stops cancer cells from dividing and demonstrates increased expression with age, the scientists suspected the gene played a similar role in aging. The researchers developed strains of mice that were either deficient in p16INK4a (the gene was deleted, or 'knocked out") or genetically altered to have an excess of the protein to a degree seen in aging.

According to Sharpless, islet proliferation persisted in p16INK4a -deficient animals as they aged, "almost as if they were younger animals." In mice with an excess of p16INK4a, "islet cells aged prematurely; they stopped dividing early."

"This suggests that if we could attenuate p16INK4a expression in some way in humans, it could lead to enhanced islet re-growth in adults and a possible new treatment for diabetes," Sharpless said.

Similar results were found in the other studies, which focused on brain stem cells and blood stem cells.

The Michigan researchers, led by Dr. Sean Morrison, examined the role played by p16INK4a in neural stem cells, progenitor cells that can form new neurons and other brain cells. The team showed that p16INK4a increases markedly in those cells with aging. Moreover, p16INK4a -deficient neural stem cells work better and don't age to the same extent that wild-type (normal) stem cells do, Sharpless said.

Dr. Janakiraman Krishnamurthy, lead author of the UNC study and a postdoctoral scientist in the Sharpless lab, was a co-author of the Michigan report. The Harvard team, led by Dr. David Scadden, studied the role of p16INK4a in hematopoietic stem cells, which proliferate continuously during the adult lifespan and produce massive amounts of new blood cells on an hourly basis. Their results suggest that p16INK4a is the molecular basis for an old-age "signal" previously observed in blood stem cells. The Harvard study also showed that blood stem cells from old mice lacking p16INK4a functioned better than old cells from wild-type mice, suggesting p16INK4a causes aging of these cells as well.

Sharpless cautions that any promise of a potential new aging treatment based on p16INK4a should include two important caveats. "First, even though old mice lacking p16INK4a show enhanced stem cell function, they do not live longer. This is because p16INK4a is an important cancer-suppressor gene, and mice lacking p16INK4a develop more cancers than old, normal mice," he said.

"Secondly, in all three studies, p16INK4a loss was associated with an improvement in some but not all of the consequences of aging. There are clearly things in addition to p16INK4a that contribute to aging. We don't yet know what they are."

However, the gene may prove immediately useful as a biomarker for studies of aging, Sharpless said. "If you were going to calorically restrict yourself or take green tea or resveratrol every day for years in an effort to prevent aging, wouldn't you like some evidence that these not entirely benign things were having a beneficial effect? Now we have a biomarker that can directly test the effects of such things," he said.

L.H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>