Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study offers clues to brain's protective mechanisms against alcoholism

05.09.2006
A new study provides clues that differing brain chemistry may provide part of the answer to why some people with a strong family history of alcoholism develop alcohol dependency while others do not.

Why do some people with a strong family history of alcoholism develop alcohol dependency while others do not? A new study provides clues that differing brain chemistry may provide part of the answer. Researchers from four scientific institutions and federal agencies working at the U.S. Department of Energy's Brookhaven National Laboratory have found that elevated levels of D2 receptors for dopamine -- a chemical "messenger" in the brain's reward circuits -- may provide a protective effect for those most at risk for developing alcoholism. The study, part of an ongoing effort to understand the biochemical basis of alcohol abuse, also provides new evidence for a linkage between emotional attributes and brain function. The study appears in the September 2006 issue of the Archives of General Psychiatry.

"Higher levels of dopamine D2 receptors may provide protection against alcoholism by triggering the brain circuits involved in inhibiting behavioral responses to the presence of alcohol," said lead author Nora D. Volkow, Director of the National Institute on Drug Abuse (NIDA) and former Associate Laboratory Director for life sciences research at Brookhaven Lab. "This means that treatment strategies for alcoholism that increase dopamine D2 receptors could be beneficial for at-risk individuals."

Earlier Brookhaven Lab studies have demonstrated that increasing dopamine D2 receptors by genetic manipulation decreased alcohol consumption in rats that had been trained (http://www.bnl.gov/bnlweb/pubaf/pr/2001/bnlpr090501.htm) or that were genetically predisposed (http://www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=04-47) to drink large quantities of alcohol. Another study found that such D2-receptor "gene therapy" reduced drinking in mice with normal to moderately low levels of D2 receptors (http://www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=05-49). The current study adds to the evidence that D2 receptors modulate the motivation to drink alcohol and that increasing these receptors could play a role in the treatment of alcoholism. The D2 receptor is one of five dopamine receptor subtypes.

In this study, researchers compared the number of dopamine D2 receptors in two groups: 16 nonalcoholic individuals with no family history of alcoholism and 15 nonalcoholic individuals who had a positive family history of alcoholism -- an alcoholic biological father with early onset of alcoholism and at least two other first or second degree relatives (parent, child, sibling, grandparent, grandchild, cousin, aunt, uncle) with alcoholism. The latter group was at a very high risk of developing alcoholism. The researchers studied high-risk individuals rather than looking at people with drinking disorders because chronic alcohol abuse reduces the number of dopamine receptors, making comparisons difficult. Participants were scanned with positron emission tomography (PET) and were given two radioactive tracers to assess their dopamine D2 receptor levels and brain glucose -- a marker of brain function.

The scans demonstrated high levels of dopamine D2 receptors in the brains of participants with a family history of alcoholism, particularly in their frontal regions -- 10 percent higher, on average, than in the brains of those with no family history. These areas of the brain -- including the caudate and ventral striatum -- are involved in emotional reactions to stress and cognitive control of decisions about drinking.

"This suggests that dopamine D2 receptors in these brain regions protect high-risk individuals from becoming alcoholic," said principal investigator Gene-Jack Wang, who chairs Brookhaven Lab's Medical Department and is clinical head of the PET Imaging Group at the Lab's Center for Translational Neuroimaging. "This protective effect may combine with emotional and environmental factors to compensate for higher inherited vulnerability."

Each study participant was given a Multidimensional Personality Questionnaire, to measure for extroversion and introversion, also known as positive and negative emotionality. Positive emotionality is believed to decrease the likelihood of alcohol abuse. This test was given to determine whether the receptors' protective effect was associated with this or other personality characteristics.

"We found that individuals who had the highest level of dopamine D2 receptors were those who were extroverted and more motivated by positive rewards," said Volkow. "This held true for both individuals with and without a family history of alcoholism."

Dennis Tartaglia | EurekAlert!
Further information:
http://www.bnl.gov/world/

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>