Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why are so many people dying on Everest?

28.08.2006
Why are so many people dying on Mount Everest, asks doctor and climber, Andrew Sutherland in this week's BMJ?

It used to be thought that it would be physiologically impossible to climb Mount Everest with or without oxygen. In 1953 Hillary and Tenzing proved that it was possible to reach the summit with oxygen and in 1978 Messner and Habeler demonstrated it was possible without oxygen.

Although Everest has not changed, and we now have a better understanding of acclimatisation, improved climbing equipment, and established routes, it would therefore seem logical that climbing Everest might have become an altogether less deadly activity.

However, this year the unofficial body count on Mount Everest has reached 15, the most since the disaster of 1996 when 16 people died, eight in one night following an unexpected storm.

The death rate on Mount Everest has not changed over the years, with about one death for every 10 successful ascents. For anyone who reaches the summit, they have about a 1 in 20 chance of not making it down again.

So why are there so many people dying on Mount Everest? And more importantly, can we reduce this number?

The main reasons for people dying while climbing Mount Everest are injuries and exhaustion. However, there is also a large proportion of climbers who die from altitude related illness, specifically from high altitude cerebral oedema (HACE) and high altitude pulmonary oedema (HAPE).

This year, the author was on the north side of Everest as the doctor on the Everestmax expedition (www.everestmax.com) and was shocked by both the amount of altitude related illness and the relative lack of knowledge among people attempting Everest.

He writes: "On our summit attempt we were able to help with HAPE at 7000 metres, but higher up the mountain we passed four bodies of climbers who had been less fortunate. The last body we encountered was of a Frenchman who had reached the summit four days earlier but was too exhausted to descend. His best friend had tried in vain to get him down the mountain, but they had descended only 50 metres in six hours and he had to abandon him."

"Some people believe that part of the reason for the increase in deaths is the number of inexperienced climbers, who pay large sums of money to ascend Everest," he says. "In my view, climbers are not climbing beyond their ability but instead beyond their altitude ability. Unfortunately it is difficult to get experience of what it is like climbing above Camp 3 (8300 metres) without climbing Everest. Climbers invariably do not know what their ability above 8300 metres is going to be like."

He suggests that climbers need to think less about 'the climb' and more about their health on the way up.

No matter what the affliction, whether it be HACE, HAPE, or just exhaustion, the result is invariably the same – the climber starts to climb more slowly, he explains. If you are too slow this means that something is wrong and your chances of not making it off the mountain are greatly increased. But with the summit in sight this advice is too often ignored.

When the author visited the French consulate in Kathmandu to confirm the Frenchman's death, the consul, not a climbing or an altitude expert, shook his head and said, "He didn't reach the summit until 12.30; that is a 14 hour climb – it is too long."

Emma Dickinson | EurekAlert!
Further information:
http://www.bmj.com

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>