Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Why are so many people dying on Everest?

Why are so many people dying on Mount Everest, asks doctor and climber, Andrew Sutherland in this week's BMJ?

It used to be thought that it would be physiologically impossible to climb Mount Everest with or without oxygen. In 1953 Hillary and Tenzing proved that it was possible to reach the summit with oxygen and in 1978 Messner and Habeler demonstrated it was possible without oxygen.

Although Everest has not changed, and we now have a better understanding of acclimatisation, improved climbing equipment, and established routes, it would therefore seem logical that climbing Everest might have become an altogether less deadly activity.

However, this year the unofficial body count on Mount Everest has reached 15, the most since the disaster of 1996 when 16 people died, eight in one night following an unexpected storm.

The death rate on Mount Everest has not changed over the years, with about one death for every 10 successful ascents. For anyone who reaches the summit, they have about a 1 in 20 chance of not making it down again.

So why are there so many people dying on Mount Everest? And more importantly, can we reduce this number?

The main reasons for people dying while climbing Mount Everest are injuries and exhaustion. However, there is also a large proportion of climbers who die from altitude related illness, specifically from high altitude cerebral oedema (HACE) and high altitude pulmonary oedema (HAPE).

This year, the author was on the north side of Everest as the doctor on the Everestmax expedition ( and was shocked by both the amount of altitude related illness and the relative lack of knowledge among people attempting Everest.

He writes: "On our summit attempt we were able to help with HAPE at 7000 metres, but higher up the mountain we passed four bodies of climbers who had been less fortunate. The last body we encountered was of a Frenchman who had reached the summit four days earlier but was too exhausted to descend. His best friend had tried in vain to get him down the mountain, but they had descended only 50 metres in six hours and he had to abandon him."

"Some people believe that part of the reason for the increase in deaths is the number of inexperienced climbers, who pay large sums of money to ascend Everest," he says. "In my view, climbers are not climbing beyond their ability but instead beyond their altitude ability. Unfortunately it is difficult to get experience of what it is like climbing above Camp 3 (8300 metres) without climbing Everest. Climbers invariably do not know what their ability above 8300 metres is going to be like."

He suggests that climbers need to think less about 'the climb' and more about their health on the way up.

No matter what the affliction, whether it be HACE, HAPE, or just exhaustion, the result is invariably the same – the climber starts to climb more slowly, he explains. If you are too slow this means that something is wrong and your chances of not making it off the mountain are greatly increased. But with the summit in sight this advice is too often ignored.

When the author visited the French consulate in Kathmandu to confirm the Frenchman's death, the consul, not a climbing or an altitude expert, shook his head and said, "He didn't reach the summit until 12.30; that is a 14 hour climb – it is too long."

Emma Dickinson | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>