Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why are so many people dying on Everest?

28.08.2006
Why are so many people dying on Mount Everest, asks doctor and climber, Andrew Sutherland in this week's BMJ?

It used to be thought that it would be physiologically impossible to climb Mount Everest with or without oxygen. In 1953 Hillary and Tenzing proved that it was possible to reach the summit with oxygen and in 1978 Messner and Habeler demonstrated it was possible without oxygen.

Although Everest has not changed, and we now have a better understanding of acclimatisation, improved climbing equipment, and established routes, it would therefore seem logical that climbing Everest might have become an altogether less deadly activity.

However, this year the unofficial body count on Mount Everest has reached 15, the most since the disaster of 1996 when 16 people died, eight in one night following an unexpected storm.

The death rate on Mount Everest has not changed over the years, with about one death for every 10 successful ascents. For anyone who reaches the summit, they have about a 1 in 20 chance of not making it down again.

So why are there so many people dying on Mount Everest? And more importantly, can we reduce this number?

The main reasons for people dying while climbing Mount Everest are injuries and exhaustion. However, there is also a large proportion of climbers who die from altitude related illness, specifically from high altitude cerebral oedema (HACE) and high altitude pulmonary oedema (HAPE).

This year, the author was on the north side of Everest as the doctor on the Everestmax expedition (www.everestmax.com) and was shocked by both the amount of altitude related illness and the relative lack of knowledge among people attempting Everest.

He writes: "On our summit attempt we were able to help with HAPE at 7000 metres, but higher up the mountain we passed four bodies of climbers who had been less fortunate. The last body we encountered was of a Frenchman who had reached the summit four days earlier but was too exhausted to descend. His best friend had tried in vain to get him down the mountain, but they had descended only 50 metres in six hours and he had to abandon him."

"Some people believe that part of the reason for the increase in deaths is the number of inexperienced climbers, who pay large sums of money to ascend Everest," he says. "In my view, climbers are not climbing beyond their ability but instead beyond their altitude ability. Unfortunately it is difficult to get experience of what it is like climbing above Camp 3 (8300 metres) without climbing Everest. Climbers invariably do not know what their ability above 8300 metres is going to be like."

He suggests that climbers need to think less about 'the climb' and more about their health on the way up.

No matter what the affliction, whether it be HACE, HAPE, or just exhaustion, the result is invariably the same – the climber starts to climb more slowly, he explains. If you are too slow this means that something is wrong and your chances of not making it off the mountain are greatly increased. But with the summit in sight this advice is too often ignored.

When the author visited the French consulate in Kathmandu to confirm the Frenchman's death, the consul, not a climbing or an altitude expert, shook his head and said, "He didn't reach the summit until 12.30; that is a 14 hour climb – it is too long."

Emma Dickinson | EurekAlert!
Further information:
http://www.bmj.com

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>