Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ocean Noise Has Increased Considerably Since 1960s, According to New Scripps Analysis

Declassified Navy documents allow comparison that points to global shipping as the likely reason behind increase in undersea noise pollution Scripps Institution of Oceanography/UC San Diego

With populations increasing around the globe in recent decades, no one would be surprised by an increase in the amount of noise produced in terrestrial environments. Now, a unique study involving researchers at Scripps Institution of Oceanography at the University of California, San Diego, has shown that the underwater world also is becoming a noisier place, with unknown effects on marine life.

New research published in the August issue of the Journal of the Acoustical Society of America (JASA) has shown a tenfold increase in underwater ocean noise off Southern California's coast as compared with the 1960s. Mark McDonald of WhaleAcoustics in Bellvue, Colo., and John Hildebrand and Sean Wiggins of Scripps Oceanography accessed acoustic data recorded in 1964-1966 through declassified U.S. Navy documents and compared them against acoustic recordings made in 2003-2004 in the same area off San Nicolas Island, one of the Channel Islands more than 160 miles west of San Diego.

The results showed that noise levels in 2003-2004 were 10 to 12 decibels higher than in 1964-1966, an average noise increase rate of three decibels per decade. The culprit behind the increase, according to Hildebrand, appears to be a byproduct of the vast increase in the global shipping trade, the number of ships plying the world's oceans and the higher speeds and propulsion power for individual ships. The noise detected off Southern California originates from ships traveling across the entire North Pacific Ocean. According to Lloyd's Register figures quoted in the JASA paper, the world's commercial fleet more than doubled in the past 38 years, from 41,865 in 1965 to 89,899 in 2003.

"We've demonstrated that the ocean is a lot noisier now than it was 40 years ago. The noise is more powerful by a factor of 10," said Hildebrand, a professor of oceanography in the Marine Physical Laboratory at Scripps. "If we've doubled the number of ships and we've documented 10 times more noise, then the noise increase is due to both more ships and noisier individual ships than in the '60s. And that may be because the ships are now bigger, faster and have more propulsion power. The next step is to understand what aspect of modern shipping has resulted in more noise per ship," said Hildebrand.

Several years ago, while searching for information about noise levels off Southern California, Hildebrand obtained declassified documents that described a U.S. Navy sound surveillance system that used cabled hydrophones to measure ambient ocean noise in the 1960s. A detailed analysis of the recordings was reported in 1968.

Hildebrand's group sought to obtain similar readings in the same location using advanced listening devices called acoustic recording packages, or ARPs, developed in Hildebrand's laboratory. Hildebrand and members of his group regularly deploy ARPs at various locations around the world to obtain and analyze acoustic signals emitted by whales, dolphins and other marine animals.

Sean Wiggins examines data disk drives inside an acoustic recording instrument.
The authors of the study argue that the increase in noise documented off San Nicolas Island may be representative of the entire Northeast Pacific Ocean. To understand what impacts such noise might have on sound-dependent marine mammals and other sea life, the authors argue that repeated acoustic measurements at multiple sites are needed.

"The impact of the increased noise on marine animals is unknown," said Hildebrand. "If impacts are shown to exist, what can be done to protect marine animals? For instance, it may be appropriate to move shipping lanes away from areas where there are concentrations of marine animals. The impact of ocean noise pollution may be minimized by diminishing the noise source or by separating the noise from things that are sensitive to it."

The research was supported by the U.S. Navy and the Office of Naval Research.

Mario Aguilera | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>