Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study finds gene related to brain development and function plays causal role in schizophrenia

According to a new study conducted by researchers at Mount Sinai School of Medicine, variations of a gene related to brain development and function--OLIG2--may play a causal role in the development of schizophrenia, a hereditary psychiatric disorder with no known biological cause. The study is published in the August 15 printed issue of Proceedings of National Academy of Sciences.

Earlier research [at Mount Sinai and elsewhere] suggests that schizophrenia is associated with changes in myelin, the fatty substance or white matter in the brain that coats nerve fibers and is critical for the brain to function properly. Myelin is formed by a group of central nervous cells called oligodendrocytes, which are regulated by the gene oligodendrocyte lineage transcription factor 2 (OLIG2). Patients with schizophrenia are known to have insufficient levels of oligodendrocytes, however the source of this [deficiency] has not been identified, explains study co-author Joseph D. Buxbaum, PhD, the G. Harold and Leila Y. Mathers Research Professor of Geriatrics and Adult Development, Professor of Psychiatry and Neuroscience, and Co-Principal Investigator of the Siliva O. Conte Center for the Neuroscience of Mental Disorders.

Dr. Buxbaum and a team of Mount Sinai researchers collaborated with researchers from the Cardiff University School of Medicine in the United Kingdom to analyze DNA in blood samples taken from 673 unrelated patients with schizophrenia and compared their genetic information to 716 patients who did not have the disease. The controls were matched for age, sex, and ethnicity; none were taking medications at the time of the study.

The study showed that genetic variation in OLIG2 was strongly associated with schizophrenia. In addition, OLIG2 also showed a genetic association with schizophrenia when examined together with two other genes previously associated with schizophrenia--CNP and ERBB4--which are also active in the development of myelin. The expression of these three genes was also coordinated. Taken together the data support an etiological role for oligodendrocyte abnormalities in the development of schizophrenia.

"Multiple genes likely have a role in schizophrenia and there are probably many things happening in the brain of a schizophrenia patient," Dr. Buxbaum says. "The findings from this study help us tease out a potential biological cause that may be contributing to this debilitating illness. This study showed that OLIG2 has a causal etiological effect and these findings give us a stronger sense of where to look so we can develop more therapeutic targets for this very complex disease."

Dr. Buxbaum adds that as researchers further unravel the role of oligodendrocyte and myelin in schizophrenia, it is possible that medications like those being developed for the treatment of multiple sclerosis--a disorder associated with a breakdown of myelin--may have a future impact in the treatment of schizophrenia.

Mount Sinai Press Office | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>