Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study shows combination of sight and sound helps adults learn basic visual tasks more rapidly

Multi-sensory approach suggests adult perceptual systems can be modified

Researchers from Boston University (BU) and UCLA have found that using multi-sensory training programs, a research technique that engages more than one of the senses, helps adults improve their performance of low-level perceptual tasks – such as visually detecting the motion of an object – significantly faster than methods that use only one stimulus.

The study, published in a recent issue of Current Biology, demonstrates that using stimuli that involve both vision and hearing can be combined to produce speedier learning of visual information and suggest that multi-sensory training programs may be more effective for adults learning new skills – such as discriminating differences between highly similar objects, or finding an item in cluttered scene.

According to Aaron Seitz, a research assistant professor of psychology at BU and lead investigator of the study, the traditional belief among neuroscientists is that the five senses operate largely as independent systems. However, mounting data suggests that interactions between vision, hearing, smell, touch and taste are the rule rather than the exception when it comes to how the human brain processes sensory information and thus perceives things.

Using this as their basis, Seitz and his colleagues, Robyn Kym and Ladan Shams of UCLA, set out to determine if engaging both the eyes and ears can help people learn to identify patterns of motion more rapidly.

Using a specially-designed computer program, the team tested how accurately subjects could recognize whether or not dots were moving across the screen in a coherent pattern. One group of participants saw just the dots while a second group also heard a sound moving in coordination with the motion of the dots.

"We showed subjects a series of screens – each for about half of a second. In half of the screens, the dots were moving randomly. The other half contained a few dots moving in a particular direction, in this case either left or right, hidden among a bunch of randomly moving dots," explained Seitz. "We then asked the subjects to report which screens in the series they thought contained dots that were moving coherently as well as in which direction they were going."

Participants were trained on the same series of screens for 10 days and the data indicate that individuals who saw the dots accompanied by a sound learned more quickly to correctly decipher the coherent movement and course of the dots and reached near peak performance on their third day of training. Individuals trained in silence failed to reach that same level of performance even after 10 days of training.

"While all subjects did show improvement, the audiovisual group learned much faster and showed better rates of retention from session to session compared to the group that received visual signals alone," said Seitz.

While it may sound obvious that both seeing and hearing cues resulted in faster learning, the benefits of the multi-sensory training surprised the team.

"Learning how to perceive motion is thought to be controlled by lower-level functions of vision believed to be largely "fixed" or unchangeable after critical periods of development during the first few years of life," explained Seitz. "And the fact that hearing benefits this low-level visual learning is rather surprising. What our results demonstrate is that with the right training paradigms, you can actually achieve alterations in adult perceptual systems."

Kira Edler | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>