Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New findings offer more complete view of breast cancer gene mutations in US population

17.08.2006
NIH-supported study among the first to include African Americans, older women

A large study funded by the National Institutes of Health today provided the clearest picture yet of the prevalence in the U.S. population of mutations in two genes associated with an increased risk of breast cancer. The genes are called Breast Cancer 1 (BRCA1) and Breast Cancer 2 (BRCA2). In addition, the study identified key predictors for assessing which women are most likely to carry these genetic mutations.

Each year, approximately 200,000 women in the United States are diagnosed with breast cancer. The majority of breast cancer cases are caused by genetic changes that occur during a woman's lifetime and not by genetic mutations inherited from her parents. However, researchers estimate that inherited mutations play a role in anywhere from 5 to 27 percent of all breast cancer cases. In the mid 1990s, researchers found that mutations in the BRCA1 and BRCA2 genes are a major cause of the hereditary form of the disease. Women inheriting these mutations have a 40 to 85 percent lifetime risk of developing breast cancer, as well as an increased risk of ovarian cancer.

To date, most of the studies on BRCA1 and BRCA2 mutations have focused on families known to be at high risk for breast cancer and on women who develop breast cancer at a relatively young age. The new study, published today in the journal Cancer Research, looked at the prevalence and predictors of BRCA1 and BRCA2 mutations in under-studied groups of women, such as African Americans and older women.

"Studies of any notable size have focused almost exclusively on white women and young women. This research clearly was needed to improve our means of assessing the likelihood of carrying BRCA1 and BRCA2 mutations in a wider spectrum of women," said one of the study's lead investigators, Elaine Ostrander, Ph.D., chief of the Cancer Genetics Branch in the National Human Genome Research Institute's Division of Intramural Research. Dr. Ostrander was previously head of the genetics program at the Fred Hutchinson Cancer Research Center, which is the institution that led the study.

The researchers examined the prevalence and predictors of BRCA1 and BRCA2 mutations in 1,628 women with breast cancer and 674 similar women without breast cancer, all of whom were participants in the National Institute of Child Health and Human Development's (NICHD's) Women's Contraceptive And Reproductive Experiences (CARE) study. The women involved in the study were white and African American women, ages 35 to 64, who lived in the Atlanta, Detroit, Los Angeles, Philadelphia and Seattle metropolitan areas.

"The advantages of this study include its large sample size, inclusion of under-studied groups of women and the fact that the results are population based," said one of the study's co-authors, Robert Spirtas, Dr.P.H, former chief of NICHD's Contraception and Reproductive Health Branch and now retired.

Researchers found that 2.4 percent of the breast cancer patients had BRCA1 mutations and 2.3 percent had BRCA2 mutations. BRCA1 mutations were more common among white breast cancer patients (2.9 percent) than among African American patients (1.4 percent). Breast cancer patients of Jewish ancestry were also significantly more likely to have BRCA1 mutations than non-Jewish patients – 10.2 percent compared to 2.0 percent. For BRCA2, African American patients were slightly more likely to have mutations, 2.6 percent, than were white patients, 2.1 percent.

Based on their findings, the researchers went on to calculate the prevalence of BRCA1 and BRCA2 mutations in the general U.S. population. Among white and African American women ages 35 to 64, the prevalence of BRCA1 mutations is 0.06 percent and the prevalence of BRCA2 mutations is 0.4 percent, the researchers estimated.

"These findings from our large, population-based study are compatible with earlier estimates made by extrapolating from smaller studies. However, we found a slightly lower frequency of BRCA1 mutations and a higher frequency of BRCA2 mutations," said the study's other lead investigator, Kathleen Malone, Ph.D., Member of the Public Health Sciences Division at the Fred Hutchinson Cancer Center. "We think the difference lies in the fact that earlier studies were confined mainly to whites, and that African American women carry BRCA2 mutations more often than white women."

The researchers also identified key predictors of whether a woman with breast cancer is likely to carry a BRCA1 or BRCA2 mutation. Such information is important because it can help to improve means of assessing which women may benefit the most from genetic testing, increased breast cancer screening and other measures aimed at early detection, treatment or prevention. The most significant predictors for BRCA1 mutations were: Jewish ancestry, a family history of ovarian cancer and a family history of breast cancer occurring before age 45.

For BRCA2 mutations, researchers uncovered fewer predictors, and they had more modest effects. Among the breast cancer patients studied, the only significant predictors of a BRCA2 mutation were early age of onset (before age 45) in the patient herself or early onset of breast cancer in mother, sisters, grandmothers or aunts.

"These findings underscore why women need to learn as much as they can about their family health history and then share that information with their health-care professionals. However, it must be emphasized that the presence or absence of a predictive factor does not automatically equate with a high or low likelihood of carrying a breast cancer gene mutation," said NIH Director Elias A. Zerhouni, M.D. "The majority of women with breast cancer – even those with a family history of the disease – do not carry mutations in these genes. These predictors need to be considered in the context of each woman's complete family health history."

Geoff Spencer | EurekAlert!
Further information:
http://www.nih.gov

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>