Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer scientists put social network theory to the test

14.08.2006
Ever since 1969, when psychologists Jeffery Travers and Stanley Milgram first explained that everyone was separated by only six connections from anyone else, researchers have created theoretical models of the networks that societies create. Now, computer scientists at the University of Pennsylvania School of Engineering and Applied Science have devised an ingenious experiment to put such theories to the test.

The findings, which appear today in the journal Science, have implications for many forms of social interaction, from disaster management to how many friends connect to your MySpace page. The Penn researchers have found that some of the simplest social networks function the most poorly and that information beyond a "local" view of the network can actually hinder the ability of some complicated social networks to accomplish tasks.

"Travers and Milgram's classic six degrees of separation experiment was one of the first large-scale attempts at studying a human network, but almost 40 years later the interaction between social network structure and collective problem solving is still largely a matter of theoretical conjecture," said Michael Kearns, a professor in Penn's Computer and Information Science Department. "Our goal was to initiate a controlled, behavioral component of social network studies that lets us deliberately vary network structure and examine its impact on human behavior and performance."

To empirically test a number of standard network theories, Kearns and Penn doctoral students Siddharth Suri and Nick Montfort gathered 38 Penn undergraduate students at a time to play a game of color selection on networked computers. The game required each of the students to choose a color that did not match the color of any person who was immediately connected to him or her in the network. The researchers changed the patterns of the networked connections -- that is, who was connected to whom -- in ways that corresponded to the theoretical models.

"This coloring problem models social situations in which each person needs or wants to distinguish his or her behavior or choices from neighboring parties", Kearns said. "A good modern example is choosing a ringtone for your cell phone. You don't want to choose one that is the same as a family member or a colleague in the next cubicle. But if there's a limit to the number of available ringtones, you may have a difficult collective problem of coordination. In our experiments, many of the networks were quite dense with connections, and the colors were very few, so they were hard coloring problems."

The tests allowed Kearns and his colleagues to examine, in real time, how well networks of people work together to solve coloring problems. They performed a number of trials based on each model, looking at the speed at which the trial was completed and varying how much information subjects had about what colors were being selected elsewhere in the network. The Science paper describes six different network models that were tested.

The first three of the tests began with a circular structure, like a 38-member daisy chain. These networks represent a "small world" network that models a local area, such as a small group in a single town, mixed with the occasional cross-town relationship. The simplest of these, a single circular chain, was actually the most difficult for the subjects, but the more connections made across the circle, the faster the test was completed.

The fourth model represented a more engineered or hierarchical structure: a circle with two individuals that have many more connections than the rest. This model proved the easiest for the subjects: once each of the two "commanders" picked a color, everyone else unwittingly fell into place, despite the fact that nobody was told anything about the network structure or could see anything but the colors of immediate neighbors.

The last two tests studied so-called preferential attachment models, well studied networks in which many parties are highly connected. These models look something like maps of the Internet. Unlike the more circular models, here Kearns found that a complete view of the color selections across the entire network actually led to confusion among members of the network.

"We see that social networks with more connectivity aren't necessarily more efficient, but that it depends strongly on the collective problem being solved", Kearns said. "Less connectivity and less information about the network can sometimes make the problem easier. But now we have an experimental framework in which we can systematically investigate how social network structure influences actual human performance."

Greg Lester | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>