Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Different gene-expression predictors of breast cancer agree

11.08.2006
Breast cancer researchers at the University of North Carolina at Chapel Hill have identified a number of activity patterns in the genes of individual tumors that make them biologically different from others. These findings could provide valuable clinical information such as how likely the tumors are to be invasive, how well they might respond to different treatments and how likely they are to recur or spread.

Currently, doctors treating patients with breast cancer make treatment decisions and predictions based largely on the location and size of the tumor and if the cancer has spread, or metastasized, to lymph nodes and distant sites of the body.

But not all patients who are similar in terms of these clinical indicators get the same benefits from treatment.

These new findings could remedy that situation. Such differences in gene activity may be used as biomarkers to identify which treatments can be individually matched.

Over the past five years, gene expression profiles have been identified that appear to be predictive for cancer patients, especially for breast cancer patients. But these tests show very little overlap in their gene lists, and thus it is not known just how distinct these different assays might be.

According to Dr. Charles M. Perou, assistant professor of genetics and pathology at the UNC School of Medicine and a member of the UNC Lineberger Comprehensive Cancer Center, some of the predictive assays are available commercially and others are under study in clinical trials in which treatment decisions, including whether or not to use chemotherapy, are being made based on them.

"An important and unanswered question, however, is whether these assays actually disagree or agree concerning outcome predictions for the individual patient," Perou said. "I think this is a very important point because if they disagree then it becomes difficult to determine which to use and when, and which are more robust and helpful."

To compare the individual predictions made by these different genomic tests, Perou and his colleagues at UNC and at The Netherlands Cancer Institute in Amsterdam, The Netherlands, studied the concordance of five different predictors that were all applied to a single data set of 295 tumor samples for which patient survival data was available – relapse-free survival and overall survival.

Writing in the Aug. 10 issue of the New England Journal of Medicine, the researchers note that four predictors showed "significant agreement" in their outcome predictions on individual breast cancer patients, despite having little gene overlap. Of the three predictors showing the greatest concordance, two were the main assays that are commercially available and being used to guide clinical trials.

"If one assay said this patient was going to do poorly, then so did the other two," Perou said, noting that although the two commercial assays overlapped each other only by one gene, they were in 80 percent agreement with each other.

"This is good news for breast cancer patients. It means that different groups have independently arrived at tests which agree with each other and that they all do add information not provided by existing clinical tests," Perou said.

For example, several of the predictors in this study appear to predict the likelihood of breast cancer recurrence in various populations of women with node-negative disease.

Such information would be useful for identifying women who are unlikely to experience recurrence and, thus, potentially unlikely to benefit from chemotherapy.

"We find our results encouraging and interpret them to mean that although different gene sets are being used, they are each tracking a common set of biological characteristics that are present across different breast cancers and are making similar outcome predictions," Perou said.

L. H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>