Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Irrational decisions driven by emotions

07.08.2006
Irrational behaviour arises as a consequence of emotional reactions evoked when faced with difficult decisions, according to new research at UCL (University College London), funded by the Wellcome Trust. The UCL study suggests that rational behaviour may stem from an ability to override automatic emotional responses, rather than an absence of emotion per se.

It has long been assumed in classical theories of economics that people act entirely rationally when taking decisions. However, it has increasingly become recognized that humans often act irrationally, as a consequence of biasing influences. For example, people are strongly and consistently affected by the way in which a question is presented. An operation that has 40 per cent probability of success seems more appealing than one that has a 60 per cent chance of failure.

In the study, published in the journal Science, UCL researchers used a gambling experiment to establish the cognitive basis for rational decision-making. The goal of the task was to accumulate as much money as possible, with the incentive of being paid in real money in proportion to the money won during the experiment. Participants were given a starting amount of money (£50) at the beginning of each trial. They were then asked to choose between either a sure option or a gamble option (where they would have a certain chance of winning the entire amount, but also of losing it all). Subjects were presented with these choices under two different frames (i.e. scenarios), in which the sure option was worded either as the amount to be kept from the starting amount ("keep £20"), or the amount to be deducted ("lose £30"). The two options, although worded differently, would result in exactly the same outcome, i.e. that the participant would be left with £20.

The UCL study found that participants were more likely to gamble at the threat of losing £30 than the offer of keeping £20. On average, when presented with the "keep" option, participants chose to gamble 43 per cent of the time compared with 62 per cent for the "lose" option. Furthermore, there was a marked difference in behaviour between participants. Some people adopted a more rational approach and gambled more equally and consistently under both frames, while others showed a real aversion to risk in the "keep" frame while at the same time displaying high risk-seeking behaviour in the "lose" frame.

Brain imaging revealed that the amygdala, a region thought to control our emotions and mediate the 'fight or flight' reaction, underpinned this bias in the decision process. Moreover, the UCL study revealed that people with more rational behaviour had greater brain activity in the prefrontal cortex, a region known to be involved in higher-order executive processes, suggesting that their brains are better able to incorporate their emotions into a more balanced reasoning process.

Mr Benedetto de Martino, of the UCL Institute of Neurology, says: "It is well known that human choices are affected by the way in which a question is phrased. For example, saying an operation carries an 80 per cent survival rate may trigger a different response compared to saying that an operation has a 20 per cent chance of dying from it, even though they offer exactly the same degree of risk.

"Our study provides neurobiological evidence that an amygdala-based emotional system underpins this biasing of human decisions. Moreover, we found that people are rational, or irrational, to widely differing amounts. Interestingly, the amygdala was active across all participants, regardless of whether they behaved rationally or irrationally, suggesting that everyone experiences an emotional reaction when faced with such choices. However, we found that more rational individuals had greater activation in their orbitofrontal cortex (a region of prefrontal cortex) suggesting that rational individuals are able to better manage or perhaps override their emotional responses."

Jenny Gimpel | EurekAlert!
Further information:
http://www.ucl.ac.uk

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>