Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies potential drug target for Huntington's disease

01.08.2006
Blocking enzyme action could protect against energy depletion in several disorders

An enzyme known to be critical for the repair of damaged cells and the maintenance of cellular energy may be a useful target for new strategies to treat Huntington's disease (HD) and other disorders characterized by low cellular energy levels. In the August issue of Chemistry & Biology, a research team from the MassGeneral Institute for Neurodegenerative Disease (MIND) describes their discovery of a novel inhibitor of Poly (ADP-ribose) polymerase (PARP1) and their findings that PARP1 inhibitors can protect HD-affected cells from damage in laboratory assays.

"While PARP1 is essential for the repair of damaged DNA, we also know that, if overactivated, it can cause cell death by excessive energy depletion," says Aleksey Kazantsev, PhD, director of the MIND High Throughput Drug Screening Laboratory, who led the current study. "It has recently been shown that neurons from patients with Huntington's appear to be energy-deficient, so we hypothesized that modest stresses that would be tolerated by healthy cells could send HD cells below a viable energy threshold and that blocking PARP1 activation could be protective."

To test this hypothesis the MIND researchers first ran a computer search of their small-molecule library for potential novel inhibitors of PARP1, searching for those with structural similarities to known inhibitors. "Safety and efficacy of human drugs depends on many factors, so it's hard to predict which inhibitor would be most effective against a specific disorder. The more diverse novel inhibitors can be identified, the more chances there are of developing safe and effective drugs," Kazantsev explains.

Two candidate molecules were identified as potential PARP1 inhibitors based on their structure, and both of them were confirmed to inhibit the enzyme's activity in an in vitro assay. However, when tested using cultured human and rat cells, only one of the candidate molecules, K245-14, successfully prevented the death of cells in which PARP1 had been overactivated.

The next assays examined whether blocking PARP1 activity with K245-14 could reduce energy depletion in cells with the HD genetic mutation. Using cells from human HD patients and from a mouse model of the disorder, the MIND researchers compared the reactions of HD cells to oxidative stress caused by the application of hydrogen peroxide with the reactions of normal cells. Although all of the cells reacted with a loss of ATP, a key source of cellular energy, the HD cells – which had much lower ATP levels to begin with – were much more vulnerable to stress-induced energy loss. Inhibiting PARP1 by means of K245-14 reduced ATP loss in all tested cells and significantly protected against both energy loss and cell death in the HD cells.

"While we were pleased to observe these predicted protective effects in our experiments, validation of PARP1 as a useful HD drug target will require the testing of inhibitors in animal trials," Kazantsev explains. "The process of identifying the best candidates for trials will be very complex, since any drug treating a central nervous system disorder needs to penetrate the blood-brain barrier. We will be working with our collaborators at the Scripps Research Institute – world leaders in computational chemistry – to conduct a more comprehensive virtual screen and select additional promising candidates for drug development.

"Inhibition of PARP1 activity is thought to be potentially beneficial for treatment of cancer, neurodegenerative conditions such as Parkinson's disease, and over twenty other human disorders," he adds. "We envision broad therapeutic applications for small molecule inhibitors of PARP1." Kazantsev is an assistant professor of Neurology at Harvard Medical School.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>