Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies potential drug target for Huntington's disease

01.08.2006
Blocking enzyme action could protect against energy depletion in several disorders

An enzyme known to be critical for the repair of damaged cells and the maintenance of cellular energy may be a useful target for new strategies to treat Huntington's disease (HD) and other disorders characterized by low cellular energy levels. In the August issue of Chemistry & Biology, a research team from the MassGeneral Institute for Neurodegenerative Disease (MIND) describes their discovery of a novel inhibitor of Poly (ADP-ribose) polymerase (PARP1) and their findings that PARP1 inhibitors can protect HD-affected cells from damage in laboratory assays.

"While PARP1 is essential for the repair of damaged DNA, we also know that, if overactivated, it can cause cell death by excessive energy depletion," says Aleksey Kazantsev, PhD, director of the MIND High Throughput Drug Screening Laboratory, who led the current study. "It has recently been shown that neurons from patients with Huntington's appear to be energy-deficient, so we hypothesized that modest stresses that would be tolerated by healthy cells could send HD cells below a viable energy threshold and that blocking PARP1 activation could be protective."

To test this hypothesis the MIND researchers first ran a computer search of their small-molecule library for potential novel inhibitors of PARP1, searching for those with structural similarities to known inhibitors. "Safety and efficacy of human drugs depends on many factors, so it's hard to predict which inhibitor would be most effective against a specific disorder. The more diverse novel inhibitors can be identified, the more chances there are of developing safe and effective drugs," Kazantsev explains.

Two candidate molecules were identified as potential PARP1 inhibitors based on their structure, and both of them were confirmed to inhibit the enzyme's activity in an in vitro assay. However, when tested using cultured human and rat cells, only one of the candidate molecules, K245-14, successfully prevented the death of cells in which PARP1 had been overactivated.

The next assays examined whether blocking PARP1 activity with K245-14 could reduce energy depletion in cells with the HD genetic mutation. Using cells from human HD patients and from a mouse model of the disorder, the MIND researchers compared the reactions of HD cells to oxidative stress caused by the application of hydrogen peroxide with the reactions of normal cells. Although all of the cells reacted with a loss of ATP, a key source of cellular energy, the HD cells – which had much lower ATP levels to begin with – were much more vulnerable to stress-induced energy loss. Inhibiting PARP1 by means of K245-14 reduced ATP loss in all tested cells and significantly protected against both energy loss and cell death in the HD cells.

"While we were pleased to observe these predicted protective effects in our experiments, validation of PARP1 as a useful HD drug target will require the testing of inhibitors in animal trials," Kazantsev explains. "The process of identifying the best candidates for trials will be very complex, since any drug treating a central nervous system disorder needs to penetrate the blood-brain barrier. We will be working with our collaborators at the Scripps Research Institute – world leaders in computational chemistry – to conduct a more comprehensive virtual screen and select additional promising candidates for drug development.

"Inhibition of PARP1 activity is thought to be potentially beneficial for treatment of cancer, neurodegenerative conditions such as Parkinson's disease, and over twenty other human disorders," he adds. "We envision broad therapeutic applications for small molecule inhibitors of PARP1." Kazantsev is an assistant professor of Neurology at Harvard Medical School.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>