Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies potential drug target for Huntington's disease

01.08.2006
Blocking enzyme action could protect against energy depletion in several disorders

An enzyme known to be critical for the repair of damaged cells and the maintenance of cellular energy may be a useful target for new strategies to treat Huntington's disease (HD) and other disorders characterized by low cellular energy levels. In the August issue of Chemistry & Biology, a research team from the MassGeneral Institute for Neurodegenerative Disease (MIND) describes their discovery of a novel inhibitor of Poly (ADP-ribose) polymerase (PARP1) and their findings that PARP1 inhibitors can protect HD-affected cells from damage in laboratory assays.

"While PARP1 is essential for the repair of damaged DNA, we also know that, if overactivated, it can cause cell death by excessive energy depletion," says Aleksey Kazantsev, PhD, director of the MIND High Throughput Drug Screening Laboratory, who led the current study. "It has recently been shown that neurons from patients with Huntington's appear to be energy-deficient, so we hypothesized that modest stresses that would be tolerated by healthy cells could send HD cells below a viable energy threshold and that blocking PARP1 activation could be protective."

To test this hypothesis the MIND researchers first ran a computer search of their small-molecule library for potential novel inhibitors of PARP1, searching for those with structural similarities to known inhibitors. "Safety and efficacy of human drugs depends on many factors, so it's hard to predict which inhibitor would be most effective against a specific disorder. The more diverse novel inhibitors can be identified, the more chances there are of developing safe and effective drugs," Kazantsev explains.

Two candidate molecules were identified as potential PARP1 inhibitors based on their structure, and both of them were confirmed to inhibit the enzyme's activity in an in vitro assay. However, when tested using cultured human and rat cells, only one of the candidate molecules, K245-14, successfully prevented the death of cells in which PARP1 had been overactivated.

The next assays examined whether blocking PARP1 activity with K245-14 could reduce energy depletion in cells with the HD genetic mutation. Using cells from human HD patients and from a mouse model of the disorder, the MIND researchers compared the reactions of HD cells to oxidative stress caused by the application of hydrogen peroxide with the reactions of normal cells. Although all of the cells reacted with a loss of ATP, a key source of cellular energy, the HD cells – which had much lower ATP levels to begin with – were much more vulnerable to stress-induced energy loss. Inhibiting PARP1 by means of K245-14 reduced ATP loss in all tested cells and significantly protected against both energy loss and cell death in the HD cells.

"While we were pleased to observe these predicted protective effects in our experiments, validation of PARP1 as a useful HD drug target will require the testing of inhibitors in animal trials," Kazantsev explains. "The process of identifying the best candidates for trials will be very complex, since any drug treating a central nervous system disorder needs to penetrate the blood-brain barrier. We will be working with our collaborators at the Scripps Research Institute – world leaders in computational chemistry – to conduct a more comprehensive virtual screen and select additional promising candidates for drug development.

"Inhibition of PARP1 activity is thought to be potentially beneficial for treatment of cancer, neurodegenerative conditions such as Parkinson's disease, and over twenty other human disorders," he adds. "We envision broad therapeutic applications for small molecule inhibitors of PARP1." Kazantsev is an assistant professor of Neurology at Harvard Medical School.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>