Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford snake venom study shows that certain cells may eliminate poison

31.07.2006
Death by snakebite is horrible. The immediate pain of the bite is followed by swelling, bruising and weakness, then sweating or chills, with numbness, nausea, blurred vision and possibly convulsions before it's all over. Such misery is produced by a veritable witches' brew of toxins in snake venom.

It's long been thought that the body's own immune system, rather than reducing the symptoms, may make things worse. But now researchers at the Stanford University School of Medicine have shown that the immune system really does side with the victim, at least in four kinds of venom that were used in their experiments. Their findings will be published in the July 28 issue of Science.

Venom from three species of poisonous snakes and one species of honeybee were studied by a group led by Stephen Galli, MD, professor and chair of the Department of Pathology. Using mice, they analyzed how mast cells, a vital part of the immune system in mammals, reacted to the various venoms. The net effect of the mast cell response to the four venoms "is to enhance resistance to the toxicity and reduce mortality induced by the venom," said Galli, the paper's senior author.

This helpful mast cell response runs contrary to the conventional wisdom - that the immune system only added to the woes of snakebite victims. This assumption arose because of the way mast cells respond to certain other stimuli.

Mast cells synthesize a wide range of biological mediators - compounds that can promote inflammation and other tissue changes - that are selectively unleashed from the cells in response to various triggers, often intruders such as parasites or bacteria. In people who have been sensitized (i.e., made allergic) by prior exposure to substances such as peanuts or certain pollens, mast cells also respond to those stimuli. When mast cells overreact to allergens, they contribute to the effects associated with allergy attacks, such as a runny nose, sneezing, itching and red eyes. When they severely overreact, they can cause anaphylaxis, which can be fatal.

Given that tendency to overreact when stimulated by allergens, it seemed plausible that introducing venom into the body would trigger a similar response. But Galli and Martin Metz, MD, a postdoctoral scholar in pathology and first author of the study, have shown that when mast cells respond to selected venoms, they unleash proteins that break down some of the venoms' most toxic components.

The study was inspired by a 2004 paper in Nature, by Galli and a team of researchers including Metz, showing that mast cells reduced the mortality rate of mice suffering from bacterial peritonitis, a severe bacterial infection in the abdominal cavity that can also be fatal to humans. They found that mast cells released proteins that broke down a molecule called endothelin-1, one of the major toxins produced by the body during bacterial peritonitis or sepsis (bacterial infection in the blood).

In perusing the scientific literature, Metz noticed that endothelin-1 bore a striking similarity to sarafotoxin 6b, the most toxic component in the venom of the burrowing asp, or Israeli mole viper. Knowing also that mammalian mast cells had been shown to respond to many snake venoms by secreting some potent biologically active mediators, they hypothesized that mast cells might also act to degrade sarafotoxins and reduce the toxicity of the Israeli mole viper venom.

Galli and Metz first did experiments in vitro using isolated sarafotoxin 6b with mast cells from mice. "It worked as we thought it would," said Metz. The mast cells were activated, they released the expected proteins and the proteins degraded the sarafotoxin 6b. Mast cells also enhanced resistance of mice to sarafotoxin 6b when it was injected in vivo.

Next, Galli and Metz did experiments using the whole venom, not just the isolated toxin. Some of the mice they worked with were genetically deficient in mast cells, while others, called wild-type mice, had normal mast cells. "We saw the same results in the wild-type mice that we saw before with just the one component, sarafotoxin 6b," said Metz. The mast cells were activated via a particular receptor they had on the cell surface and released the appropriate proteins, which, Metz said, went on to "degrade and thus eliminate the venom, or at least make it less toxic."

The wild-type mice were able to withstand 10 times the dosage of this venom than the mast cell deficient mice could, further indicating that the mast cells were reducing the impact of the venom. To test whether mast cells could also reduce the toxicity of venom from snakes that didn't contain toxins comparable to sarafotoxin 6b, Galli and Metz tested the venom of the western diamondback rattlesnake and the southern copperhead. Again, the mast cells conferred a distinct protective edge.

Testing the mast cell response even further, they also experimented with the venom from honeybees, with the same positive result. "The mast cells significantly limit not only the toxicity, but also the mortality associated with the venom," said Galli.

But Galli called the battle between predators with venom and their prey "a kind of evolutionary arms race." He and Metz suspect that, given the broad range of venoms that have been developed by snakes and other creatures, mast cells probably won't perform as well against every type of venom.

"We expect that there will be some snake venoms that either are not affected by mast cells at all or perhaps even elicit more pathology due to their ability to activate mast cells. It all depends on the balance between the positive and negative effects of the mediators released by mast cells in response to a particular venom," said Galli.

Galli and Metz are embarking on a systematic survey of animal venoms. As more is learned about the natural defenses the mammalian immune system has against venom, it may someday even lead to better antivenins, though it will first have to be shown that human mast cells respond in the same way mouse mast cells do. The group has begun in vitro studies using human mast cells to evaluate this possibility.

Louis Bergeron | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Tune your radio: galaxies sing while forming stars

21.02.2017 | Physics and Astronomy

Improved Speech Intelligibility and Automatic Speech-to-Text Conversion for Call Centers

21.02.2017 | Trade Fair News

36 big data research projects

21.02.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>