Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Johns Hopkins Children's Center to lead largest-ever study on kidney disease in children

Findings will help curb complications, prevent kidney failure

The early progression of chronic kidney disease in children and teens is poorly understood, but a national research team led by Johns Hopkins scientists is launching the largest-ever study to learn more about this often-stealthy killer.

"There has never, to our knowledge, been a study designed to systematically assess the changes in kidney function over time in children with early kidney disease and to determine how these changes affect behavior, learning, heart disease risk and growth," says Susan Furth, M.D., Ph.D., a nephrologist at the Johns Hopkins Children's Center, one of the project's three principal investigators and lead author of a report on the study, appearing in the Clinical Journal of the American Society of Nephrology.

This NIH-funded, 57-center study hopes to follow over a period of four years 540 children ages 1 through 16 with mild to moderate kidney disease. The Johns Hopkins Children's Center is one of two clinical coordinating sites, along with the Children's Hospital at the University of Missouri-Kansas City. The Johns Hopkins Bloomberg School of Public Health is the study's data coordinating center.

Researchers will collect blood, urine, fingernail and hair samples and will monitor kidney function, height, weight, blood pressure and heart disease by the use of echocardiograms. Periodic surveys are planned to track everything from quality of life and social and cognitive development to sexual maturation during puberty, which is often delayed in teens with kidney disease. Patients will fill out questionnaires detailing everything from symptoms, to use of medications and dietary supplements, to lifestyle and exercise. Researchers will harvest cell lines to study the genetic elements of kidney disease.

Results will be reported incrementally, but some preliminary findings are already in. For example, using data from the pilot study, researchers have refined an existing method - used mostly in Europe - that measures glomerular filtration rate (GFR). GFR, which measures the kidneys' filtering capacity, is the most precise indicator of kidney function and status.

The new, improved method, which measures how fast the kidneys clear an injected contrast agent from the blood, promises to become the new gold standard for kidney function estimates in clinical trials and will also help researchers refine existing GFR-estimate formulas that doctors use for children. The current methods for estimating GFR yield faulty results in children 25 percent of the time.

Kidney disease in children tends to start and evolve silently. More than one-third (37 percent) of kidney transplant patients in 2001 were between the ages of 20 and 44, and the majority of them likely developed the disease in childhood, researchers say. Researchers estimate that 650,000 Americans will develop end-stage renal disease by 2010, costing the health care system $28 billion a year.

Katerina Pesheva | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Custom sequences for polymers using visible light

22.03.2018 | Materials Sciences

Scientists develop tiny tooth-mounted sensors that can track what you eat

22.03.2018 | Health and Medicine

Mat baits, hooks and destroys pollutants in water

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>