Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study establishes safety of spinal cord stem cell transplantation

Research confirms ability of stem cells to repair acute spinal cord damage without causing further injury

Transplanting human embryonic stem cells does not cause harm and can be used as a therapeutic strategy for the treatment of acute spinal cord injury, according to a recent study by UC Irvine researchers.

UCI neurobiologist Hans Keirstead and colleagues at the Reeve-Irvine Research Center found that rats with either mild or severe spinal cord injuries that were transplanted with a treatment derived from human embryonic stem cells suffered no visible injury or ill effects as a result of the treatment itself. Furthermore, the study confirmed previous findings by Keirstead’s lab – since replicated by four other laboratories around the world – that replacing a cell type lost after injury improves the outcome after spinal cord injury in rodents. The findings are published in the current issue of Regenerative Medicine.

“Establishing the safety of implanted embryonic stem cells is crucial before we can move forward with testing these treatments in clinical trials,” said Keirstead, an associate professor of anatomy and neurobiology and co-director of UCI’s Stem Cell Research Center. “We must always remember that a human clinical trial is an experiment and, going into it, we need to assure ourselves as best as we can that the treatment will not cause harm. This study is an important step in that direction.”

In 2005, Keirstead’s lab was the first to coax human embryonic stem cells to become highly pure specialized cells known as oligodendrocytes. These cells are the building blocks of myelin, which acts as insulation for nerve fibers and is critical for maintenance of electrical conduction in the central nervous system. When myelin is stripped away through disease or injury, paralysis can occur.

In this study, as in the original one, when the rats suffering from severe spinal cord injury were injected with the oligodendrocytes seven days after injury, the cells migrated to the appropriate sites within the spinal cord and wrapped around the damaged neurons, forming new myelin tissue.

By contrast, the rats who were only mildly impaired showed no increase or decrease in myelin generation, and no change in their walking ability after transplantation. According to Keirstead, the injury was so minor that no loss of myelin occurred. Therefore, a treatment based on remyelination would have no effect and the animals recovered motor function on their own. More importantly, while the treatment did not help with functional recovery, it also did not impair it. Upon further examination, the scientists found no damage to the tissues surrounding the spinal cord indicating that the transplantation had not caused any damage to the animals.

“Our biggest safety concern was that in the case of a severe injury, any harm the stem cell-derived treatment could cause would be masked by the injury itself,” Keirstead said. “In this study, we can see in animals that are only slightly injured that the transplantation does not cause visible harm and the injury is not hiding any damage the cells may have caused to the spinal cord or the surrounding tissue.”

Keirstead is working with Geron Corp. to bring this treatment for acute spinal cord injury into Phase I clinical trials within the next year.

Frank Cloutier, Monica Siegenthaler and Gabriel Nistor collaborated on the study, which was supported by Geron Corp.; a UC Discovery Grant; the Roman Reed Spinal Cord Injury Research Fund of California; Research for Cure; and individual donations to the Reeve-Irvine Research Center.

UCI is a premier center for stem cell research in California. The university announced last week that it had received a $10 million gift from Bill and Sue Gross in support of stem cell research, including matching funds to construct an $80 million Stem Cell Research Center facility.

About the University of California, Irvine: The University of California, Irvine is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 24,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3.3 billion. For more UCI news, visit

Television: UCI has a broadcast studio available for live or taped interviews. For more information, visit

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. The use of this line is available free-of-charge to radio news programs/stations who wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Farnaz Khadem | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>