Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Connect the Quantum Dots

20.07.2006
Pioneering invention has commercial applications in medical diagnostics

A new study, published today in the current issue of the Proceedings of the National Academy of Sciences has significant implications for the design of disease markers and the development of chemoreceptors used in human biomedical research. The groundbreaking study, entitled, "A Mechanism to Signal Receptor-Substrate Interactions with Luminescent Quantum Dots", demonstrates that quantum dots can one day replace conventional organic dyes in biomedical applications.

By using the unique photophysical properties of quantum dots, researchers Drs. Francisco Raymo, Ibrahim Yildiz, and Massimilliano Tomasulo were able to identify operating principles to probe molecular recognition events with luminescence measurements. These findings demonstrate that mechanisms based on photoinduced electron transfer can be exploited to transduce a recognition event into a significant change in the luminescence of a quantum dot. This research proves this important fundamental principle and lay the necessary groundwork for researchers to further improve its sensitivity, stability and reproducibility for biomedical applications.

"Our method has a long-term impact on biomedical diagnostic applications which currently rely on the fluorescence of organic dyes," says Francisco Raymo, Ph.D., associate professor of chemistry in the University of Miami's College of Arts and Sciences. "For example, our strategy can be designed to signal specific disease markers in biological samples thus replacing conventional organic dyes in a diversity of imaging and sensing applications."

Fluorescence microscopy and spectroscopy have become invaluable analytical tools in biomedical research but rely on the fluorescence of organic dyes which have limited luminescent properties. Quantum dots have superior photophysical properties and will presumably replace conventional organic dyes in biomedical applications. These findings will stimulate the use of quantum dots in the biomedical research and development of disease markers and chemosensors.

"On its own this research paper is very significant and ahead of its time in the field of nanotechnology," says Alexey Titov, Licensing Manager for the University of Miami's Office of Technology Transfer. "However, it also has commercial applications which are a truly outstanding and rare combination."

Two patent applications have been filed by University of Miami Office of Technology Transfer on behalf of Dr. Raymo and colleagues for these inventions and the university is in the process of finding an industrial partner capable of commercializing these inventions.

Quantum dots, one of the smallest nanoscience research tools, range from 2 to 10 nanometers in diameter; nearly 3 million quantum dots would be needed to fit within the width of a thumb. By virtue of their distinct colors, quantum dots have quickly found their way into homes in many electronic lasers including the new PlayStation 3 and high-definition DVD players. Nanotechnology, the understanding and control of matter at dimensions of roughly 1 to 100 nanometers, is valuable research since matter at the nanoscale has unique properties that enable novel applications. Medical researchers work at the nano-scales can develop new drug delivery methods, therapeutics and pharmaceuticals.

Annie Reisewitz | EurekAlert!
Further information:
http://www.miami.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>