Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Connect the Quantum Dots

20.07.2006
Pioneering invention has commercial applications in medical diagnostics

A new study, published today in the current issue of the Proceedings of the National Academy of Sciences has significant implications for the design of disease markers and the development of chemoreceptors used in human biomedical research. The groundbreaking study, entitled, "A Mechanism to Signal Receptor-Substrate Interactions with Luminescent Quantum Dots", demonstrates that quantum dots can one day replace conventional organic dyes in biomedical applications.

By using the unique photophysical properties of quantum dots, researchers Drs. Francisco Raymo, Ibrahim Yildiz, and Massimilliano Tomasulo were able to identify operating principles to probe molecular recognition events with luminescence measurements. These findings demonstrate that mechanisms based on photoinduced electron transfer can be exploited to transduce a recognition event into a significant change in the luminescence of a quantum dot. This research proves this important fundamental principle and lay the necessary groundwork for researchers to further improve its sensitivity, stability and reproducibility for biomedical applications.

"Our method has a long-term impact on biomedical diagnostic applications which currently rely on the fluorescence of organic dyes," says Francisco Raymo, Ph.D., associate professor of chemistry in the University of Miami's College of Arts and Sciences. "For example, our strategy can be designed to signal specific disease markers in biological samples thus replacing conventional organic dyes in a diversity of imaging and sensing applications."

Fluorescence microscopy and spectroscopy have become invaluable analytical tools in biomedical research but rely on the fluorescence of organic dyes which have limited luminescent properties. Quantum dots have superior photophysical properties and will presumably replace conventional organic dyes in biomedical applications. These findings will stimulate the use of quantum dots in the biomedical research and development of disease markers and chemosensors.

"On its own this research paper is very significant and ahead of its time in the field of nanotechnology," says Alexey Titov, Licensing Manager for the University of Miami's Office of Technology Transfer. "However, it also has commercial applications which are a truly outstanding and rare combination."

Two patent applications have been filed by University of Miami Office of Technology Transfer on behalf of Dr. Raymo and colleagues for these inventions and the university is in the process of finding an industrial partner capable of commercializing these inventions.

Quantum dots, one of the smallest nanoscience research tools, range from 2 to 10 nanometers in diameter; nearly 3 million quantum dots would be needed to fit within the width of a thumb. By virtue of their distinct colors, quantum dots have quickly found their way into homes in many electronic lasers including the new PlayStation 3 and high-definition DVD players. Nanotechnology, the understanding and control of matter at dimensions of roughly 1 to 100 nanometers, is valuable research since matter at the nanoscale has unique properties that enable novel applications. Medical researchers work at the nano-scales can develop new drug delivery methods, therapeutics and pharmaceuticals.

Annie Reisewitz | EurekAlert!
Further information:
http://www.miami.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>