Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Connect the Quantum Dots

20.07.2006
Pioneering invention has commercial applications in medical diagnostics

A new study, published today in the current issue of the Proceedings of the National Academy of Sciences has significant implications for the design of disease markers and the development of chemoreceptors used in human biomedical research. The groundbreaking study, entitled, "A Mechanism to Signal Receptor-Substrate Interactions with Luminescent Quantum Dots", demonstrates that quantum dots can one day replace conventional organic dyes in biomedical applications.

By using the unique photophysical properties of quantum dots, researchers Drs. Francisco Raymo, Ibrahim Yildiz, and Massimilliano Tomasulo were able to identify operating principles to probe molecular recognition events with luminescence measurements. These findings demonstrate that mechanisms based on photoinduced electron transfer can be exploited to transduce a recognition event into a significant change in the luminescence of a quantum dot. This research proves this important fundamental principle and lay the necessary groundwork for researchers to further improve its sensitivity, stability and reproducibility for biomedical applications.

"Our method has a long-term impact on biomedical diagnostic applications which currently rely on the fluorescence of organic dyes," says Francisco Raymo, Ph.D., associate professor of chemistry in the University of Miami's College of Arts and Sciences. "For example, our strategy can be designed to signal specific disease markers in biological samples thus replacing conventional organic dyes in a diversity of imaging and sensing applications."

Fluorescence microscopy and spectroscopy have become invaluable analytical tools in biomedical research but rely on the fluorescence of organic dyes which have limited luminescent properties. Quantum dots have superior photophysical properties and will presumably replace conventional organic dyes in biomedical applications. These findings will stimulate the use of quantum dots in the biomedical research and development of disease markers and chemosensors.

"On its own this research paper is very significant and ahead of its time in the field of nanotechnology," says Alexey Titov, Licensing Manager for the University of Miami's Office of Technology Transfer. "However, it also has commercial applications which are a truly outstanding and rare combination."

Two patent applications have been filed by University of Miami Office of Technology Transfer on behalf of Dr. Raymo and colleagues for these inventions and the university is in the process of finding an industrial partner capable of commercializing these inventions.

Quantum dots, one of the smallest nanoscience research tools, range from 2 to 10 nanometers in diameter; nearly 3 million quantum dots would be needed to fit within the width of a thumb. By virtue of their distinct colors, quantum dots have quickly found their way into homes in many electronic lasers including the new PlayStation 3 and high-definition DVD players. Nanotechnology, the understanding and control of matter at dimensions of roughly 1 to 100 nanometers, is valuable research since matter at the nanoscale has unique properties that enable novel applications. Medical researchers work at the nano-scales can develop new drug delivery methods, therapeutics and pharmaceuticals.

Annie Reisewitz | EurekAlert!
Further information:
http://www.miami.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>