Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study offers new clues about memory

20.07.2006
A study conducted by researchers at Carnegie Mellon University and the University of Pittsburgh involving an amnesia-inducing drug has shed light on how we form new memories.

For a paper to be published in the July edition of the journal Psychological Science, researchers gave participants material to remember in two experimental sessions -- once after being injected with a saline placebo and once after an injection of midazolam, a drug used to relieve anxiety during surgical procedures that also causes short-term anterograde amnesia, the most common form of amnesia. Anterograde amnesia, which was portrayed in the film "Memento," impairs a person's ability to form new memories while leaving old ones unharmed.

The study revealed that the drug prevented people from linking a studied item to the experimental context. That linkage is necessary for a process known as recollection, in which people retrieve contextual details involved in the experience of studying the information. People sometimes recognize something as having been studied without using recollection (in this case, without remembering details of the study event) if the item seems sufficiently familiar -- a process called familiarity. Although the recollection process was affected by the drug, the familiarity process was not. This is the same pattern that is found with patients suffering from anterograde amnesia. They are unable to form new associations, severely limiting the accuracy of their recognition judgments.

"This helps us understand the general functions of memory. It helps us to relate, for example, the memory declines seen in old age to those seen in patients with hippocampal damage," said Lynne Reder, a professor of psychology at Carnegie Mellon and the study's lead author.

Using a double-blind, within-subject protocol, the scientists compared the participants' performance on the test after studying the material either under the influence of midazolam or after receiving an injection of a saline placebo. In both sessions, participants viewed words, photographs of faces and landscapes, and abstract pictures one at a time on a computer screen. Twenty minutes later, they were shown the words and images again, one at a time. Half of the images they had seen earlier, and half were new. They were then asked whether they recognized each one.

The researchers predicted that the more participants relied on recollection with saline, the more they would be hurt under the influence of midazolam. Their findings matched those predictions. Researchers found that the participants' memory while in the placebo condition was best for words, but the worst for abstract images. Midazolam impaired the recognition of words the most and did not affect recognition of abstract pictures.

The experiment further reinforced the thought that the ability to recollect depends on the ability to link the stimulus to a context. While the words were very concrete and therefore easy to link to the experimental context, the photographs were of unknown people and unknown places (not, for example, of Marilyn Monroe or the Eiffel Tower) and thus hard to distinctively label. The abstract images were also unfamiliar and not unitized into something that could be described with a single word (such as Picasso's "Guernica"). This meant that a person could not easily link the image with a context, regardless of drug condition.

Jonathan Potts | EurekAlert!
Further information:
http://www.andrew.cmu.edu

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>