Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Centuries of Land-use Practices Profoundly Impact Earth System

17.07.2006
In a paper published in the July 2006 issue of Global Change Biology, University of New Hampshire scientists George Hurtt, Steve Frolking, and coauthors show that land-use activities over the last 300 years have substantially altered the land surface in ways that are likely to have had profound effects on the Earth system. Land-use changes have impacted some 42-68 percent of the global land surface, according to the study, which used historical records, satellite data, and computer modeling to reconstruct 216 different global land-use reconstructions to derive the most comprehensive picture to-date.

“This is the first global land-use history description that’s designed specifically to allow global carbon and climate models to assess the impacts of land-use history both on the past and current sources and sinks of carbon and climate,” says Hurtt, assistant professor of natural resources at the UNH Institute for the Study of Earth, Oceans, and Space (EOS) and Department of Natural Resources.

According to Hurtt, this global land-use data will allow the next generation of coupled carbon-climate models, known as Earth-system models, to include the most advanced representations of land-use practices yet, including the first mapped estimates of the effects of shifting agriculture, logging, and secondary recovering lands.

“Land-use activities are known to have added large amounts of carbon dioxide to the atmosphere, altered surface reflectivity, and led to habitat alteration and destruction,” says Hurtt. “A major challenge for scientists now is to understand the combined effects of these activities on the dynamics of the carbon-climate system. This study provides a key basis for these assessments.”

Land-use history is critical to understanding the dynamics of the carbon-climate system, not just for technical reasons but also for policy reasons. One of the big policy debates is to what extent carbon sinks in ecosystems should be able to offset carbon emissions. “It is important to know if a carbon sink in an ecosystem today is simply the result of recovery from having been cut down in the past, or a net new storage for carbon over the long term,” says Hurtt.

Moreover, he notes, without this historical analysis of land-use activities, even the most sophisticated models would be inaccurate. “Even if you didn’t care about the past and wanted to focus on future global environmental changes, you would still have to first ‘initialize’ your model to the current state of the planet. Because the current state has been altered by a history of land-use activities over most of the planet, knowledge of historical activities increases the knowledge of the current conditions,” Hurtt says of the work.

Late last year, Hurtt presented the land-use research, now published in Global Change Biology, in a “platform” presentation at the Seventh International Carbon Dioxide Conference held in Boulder, Colorado. Since that time, the presentation has been downloaded more than 1,000 times by individuals interested in the data.

UNH co-authors of the study include Berrien Moore and Matthew Fearon. The study was also co-authored by Steve Pacala, Elena Shevliakova, and Sergey Malysev of Princeton University, and Richard Houghton of the Woods Hole Research Center.

George Hurtt can be reached at (603) 862-4185.

George Hurtt | EurekAlert!
Further information:
http://www.unh.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>