Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Centuries of Land-use Practices Profoundly Impact Earth System

In a paper published in the July 2006 issue of Global Change Biology, University of New Hampshire scientists George Hurtt, Steve Frolking, and coauthors show that land-use activities over the last 300 years have substantially altered the land surface in ways that are likely to have had profound effects on the Earth system. Land-use changes have impacted some 42-68 percent of the global land surface, according to the study, which used historical records, satellite data, and computer modeling to reconstruct 216 different global land-use reconstructions to derive the most comprehensive picture to-date.

“This is the first global land-use history description that’s designed specifically to allow global carbon and climate models to assess the impacts of land-use history both on the past and current sources and sinks of carbon and climate,” says Hurtt, assistant professor of natural resources at the UNH Institute for the Study of Earth, Oceans, and Space (EOS) and Department of Natural Resources.

According to Hurtt, this global land-use data will allow the next generation of coupled carbon-climate models, known as Earth-system models, to include the most advanced representations of land-use practices yet, including the first mapped estimates of the effects of shifting agriculture, logging, and secondary recovering lands.

“Land-use activities are known to have added large amounts of carbon dioxide to the atmosphere, altered surface reflectivity, and led to habitat alteration and destruction,” says Hurtt. “A major challenge for scientists now is to understand the combined effects of these activities on the dynamics of the carbon-climate system. This study provides a key basis for these assessments.”

Land-use history is critical to understanding the dynamics of the carbon-climate system, not just for technical reasons but also for policy reasons. One of the big policy debates is to what extent carbon sinks in ecosystems should be able to offset carbon emissions. “It is important to know if a carbon sink in an ecosystem today is simply the result of recovery from having been cut down in the past, or a net new storage for carbon over the long term,” says Hurtt.

Moreover, he notes, without this historical analysis of land-use activities, even the most sophisticated models would be inaccurate. “Even if you didn’t care about the past and wanted to focus on future global environmental changes, you would still have to first ‘initialize’ your model to the current state of the planet. Because the current state has been altered by a history of land-use activities over most of the planet, knowledge of historical activities increases the knowledge of the current conditions,” Hurtt says of the work.

Late last year, Hurtt presented the land-use research, now published in Global Change Biology, in a “platform” presentation at the Seventh International Carbon Dioxide Conference held in Boulder, Colorado. Since that time, the presentation has been downloaded more than 1,000 times by individuals interested in the data.

UNH co-authors of the study include Berrien Moore and Matthew Fearon. The study was also co-authored by Steve Pacala, Elena Shevliakova, and Sergey Malysev of Princeton University, and Richard Houghton of the Woods Hole Research Center.

George Hurtt can be reached at (603) 862-4185.

George Hurtt | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>