Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Centuries of Land-use Practices Profoundly Impact Earth System

17.07.2006
In a paper published in the July 2006 issue of Global Change Biology, University of New Hampshire scientists George Hurtt, Steve Frolking, and coauthors show that land-use activities over the last 300 years have substantially altered the land surface in ways that are likely to have had profound effects on the Earth system. Land-use changes have impacted some 42-68 percent of the global land surface, according to the study, which used historical records, satellite data, and computer modeling to reconstruct 216 different global land-use reconstructions to derive the most comprehensive picture to-date.

“This is the first global land-use history description that’s designed specifically to allow global carbon and climate models to assess the impacts of land-use history both on the past and current sources and sinks of carbon and climate,” says Hurtt, assistant professor of natural resources at the UNH Institute for the Study of Earth, Oceans, and Space (EOS) and Department of Natural Resources.

According to Hurtt, this global land-use data will allow the next generation of coupled carbon-climate models, known as Earth-system models, to include the most advanced representations of land-use practices yet, including the first mapped estimates of the effects of shifting agriculture, logging, and secondary recovering lands.

“Land-use activities are known to have added large amounts of carbon dioxide to the atmosphere, altered surface reflectivity, and led to habitat alteration and destruction,” says Hurtt. “A major challenge for scientists now is to understand the combined effects of these activities on the dynamics of the carbon-climate system. This study provides a key basis for these assessments.”

Land-use history is critical to understanding the dynamics of the carbon-climate system, not just for technical reasons but also for policy reasons. One of the big policy debates is to what extent carbon sinks in ecosystems should be able to offset carbon emissions. “It is important to know if a carbon sink in an ecosystem today is simply the result of recovery from having been cut down in the past, or a net new storage for carbon over the long term,” says Hurtt.

Moreover, he notes, without this historical analysis of land-use activities, even the most sophisticated models would be inaccurate. “Even if you didn’t care about the past and wanted to focus on future global environmental changes, you would still have to first ‘initialize’ your model to the current state of the planet. Because the current state has been altered by a history of land-use activities over most of the planet, knowledge of historical activities increases the knowledge of the current conditions,” Hurtt says of the work.

Late last year, Hurtt presented the land-use research, now published in Global Change Biology, in a “platform” presentation at the Seventh International Carbon Dioxide Conference held in Boulder, Colorado. Since that time, the presentation has been downloaded more than 1,000 times by individuals interested in the data.

UNH co-authors of the study include Berrien Moore and Matthew Fearon. The study was also co-authored by Steve Pacala, Elena Shevliakova, and Sergey Malysev of Princeton University, and Richard Houghton of the Woods Hole Research Center.

George Hurtt can be reached at (603) 862-4185.

George Hurtt | EurekAlert!
Further information:
http://www.unh.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>