Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetics behind developmental brain disorders may play a wider role with congenital diseases

10.07.2006
UCI study finds basis for breakdown of 'skeleton' proteins in brain cells

Findings of a recent genetic study on developmental brain disorders may be the “tip of an iceberg” revealing factors involved with a number of congenital diseases, according to UC Irvine researchers.

The study is the first to find that mutations in the structural proteins in brain cells – beta-actin – are linked to disorders such as deafness and dystonia, a debilitating neural disease, and further suggests that genetic variants of these proteins may play a wider role with inherited human diseases. Study results appeared in the June issue of the American Journal of Human Genetics.

The findings give vital clues to the basis of some developmental disorders and make early diagnosis possible for diseases such as dystonia, allowing for greater treatment opportunities, said Dr. Vincent Procaccio of UCI’s Center for Molecular and Mitochondrial Medicine and Genetics and lead author, though the study does not point to potential therapies.

“These types of actin proteins are prevalent throughout the body and play a key role in processes that are an essential part of development,” said Procaccio, who is also an assistant professor of pediatrics. “To find that these mutations are involved with brain disorders seems to be the tip of an iceberg. Since beta-actin is involved with many developmental cell functions, it would appear that its genetic variants can be involved with a number of other congenital disorders.”

Procaccio and his colleagues studied brain tissue samples from deceased twins who had a number of developmental disabilities including dystonia, a neurological disorder that causes twisting or jerking movements in parts of the body. Genetic analysis revealed mutations in the beta-actin gene. These mutations affected protein conformation, which would not allow beta-actin to bind with ATP – the chemical fuel synthesized by mitochondria that give a cell its energy.

Beta-actin is a structural protein that helps form the cytoskeleton – a cell’s skeleton that gives it structure and strength. Unable to receive fuel, the mutated beta-actin proteins break down, ultimately damaging and destroying the cell. In the brain, this leads to the neural tissue damage related to congenital neurological disorders like dystonia.

Taking this information, Procaccio and his fellow researchers are working to demonstrate that beta-actin mutations are a common cause of neurological disorders. They are currently analyzing several DNA samples from patients to identify additional abnormalities. In addition, they are investigating the cellular and biophysical abnormalities resulting from beta-actin mutations, which will serve as a basis to identify other mutations and disease phenotypes arising from genetic abnormalities of beta-actin proteins.

“Ultimately, we hope to prove that the identification of genetic abnormalities of the beta-actin are likely to explain the causes of a spectrum of disease phenotypes, including congenital malformation syndromes and other inherited degenerative diseases, that are presently poorly understood,” he said.

Study co-authors are Antonio Davila and Richard Jimenez of UCI; Gloria Salazar, Shoichiro Ono, Melanie Styers, Victor Faundez, Marla Gearing, Jorge Juncos, Claire-Anne Gutekunst and Bruce Wainer of Emory University in Atlanta; Estelle Sontag and Jean Marie Sontag of University of Texas Southwest Medical Center in Dallas; and Germana Meroni and Bianca Fontanella of the Telethon Institute of Genetics and Medicine in Naples, Italy. The National Institutes of Health supported the study.

About mitochondria: Mitochondria are the power plants of cells that are responsible for burning the calories in our diet with the oxygen that we breathe to generate carbon dioxide, water and the energy for our cells. The cellular energy is used for two purposes, to generate heat to maintain our body temperature and to synthesize ATP (adenosine triphosphate), a chemical form of energy which permits us to do work such as exercise, think, write, and make and repair cells and tissues. At least 50 percent of energy provided by brain mitochondria is used to maintain beta-actin cytoskeleton in neuronal cells.

About the Center for Molecular and Mitochondrial Medicine and Genetics: The Center for Molecular and Mitochondrial Medicine and Genetics, under the direction of Douglas C. Wallace, brings together basic scientists, clinical investigators and patients at UCI to determine the causes of the common degenerative diseases, cancer and aging with special emphasis on the role of mitochondria in these diseases’ processes. This includes the development of more effective diagnostics and therapeutics. To achieve this goal, MAMMAG takes a novel approach to understanding these problems with special emphasis on the evolutionary, molecular and mitochondrial medicine perspectives. The result is a uniquely integrated, multidisciplinary research and clinical program that intends to expand the human horizons of medical understanding. More: 949-824-3490 or mammag@uci.edu.

About the University of California, Irvine: The University of California, Irvine is a top-ranked university dedicated to research, scholarship and community service. Founded in 1965, UCI is among the fastest-growing University of California campuses, with more than 24,000 undergraduate and graduate students and about 1,400 faculty members. The second-largest employer in dynamic Orange County, UCI contributes an annual economic impact of $3.3 billion. For more UCI news, visit www.today.uci.edu.

Television: UCI has a broadcast studio available for live or taped interviews. For more information, visit www.today.uci.edu/broadcast.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. The use of this line is available free-of-charge to radio news programs/stations who wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>