Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF study sheds light on cystic fibrosis-related diabetes

10.07.2006
A growing number of cystic fibrosis patients are battling a second, often deadly complication: a unique form of diabetes that shares characteristics of the type 1 and type 2 versions that strike many Americans.

Many of these patients are teens who take enzymes to help digest their food and undergo daily physical therapy to loosen the thick, sticky mucus that clogs their lungs. But despite treatments that are helping thousands to live decades longer than ever before, when diabetes strikes, their life expectancy plummets -- on average by two years for men and an astounding 16 for women.

Now a University of Florida study in animals suggests diabetes in cystic fibrosis patients is not caused by the destruction of insulin-producing cells in the pancreas -- as is often the case in patients with the traditional form of type 1 diabetes -- but by differences in how these cells function. The findings were published this month in the American Diabetes Association's journal Diabetes.

Cystic fibrosis patients with diabetes produce some insulin on their own, but they require daily injections to boost their levels when eating so they can properly use sugar and other food nutrients for energy. At times they also become very resistant to the insulin they do make, similar to people with type 2 diabetes.

"For the longest time, the development of diabetes in cystic fibrosis has been thought to be chronic destruction of pancreas, so eventually you get loss of the insulin-producing beta cells," said Michael Stalvey, M.D., an assistant professor of pediatrics at UF. "Our study provides some early evidence to suggest there is an inherent difference in beta cell function."

Cystic fibrosis patients suffer recurrent episodes of infection and inflammation that slowly destroy the lungs. The pancreas is also affected, interfering with proper digestion. The disease stems from a faulty gene that blocks the normal passage of salt and water through the body's cells. It is this gene deficiency that is proposed to cause insulin-producing cells to malfunction, Stalvey said.

About 30,000 Americans have cystic fibrosis, making it the nation's most common lethal hereditary disorder. On average, they will not live past 35, though some are living through their 40s and even into their 60s. As each year passes, the likelihood they will develop diabetes increases. As many as 16 percent of all patients with cystic fibrosis also have diabetes, a number that is expected to rise as overall life expectancy for cystic fibrosis patients increases. Half will show signs of diabetes by age 30 and will suffer a rapid decline in overall health and lung function, muscle mass and body mass index.

"It's becoming more and more frequent because of the increasing age of patients," Stalvey said. "That's part of the reason why new recommendations call for screening patients 14 years and older yearly with an oral glucose tolerance test. Each year we know their likelihood of developing diabetes gets higher and higher.

"These young people, teenagers or young adults in their early 20s, have been fighting all their lives to stay healthy and keep their nutrition up," he added. "Now they've just been given something that potentially will overwhelm them. It's a huge thing for them, given the consequences that diabetes means to their underlying condition."

In the UF study, researchers developed the first animal model for the study of cystic fibrosis-related diabetes. They used mice that scientists from the University of North Carolina engineered to be missing the gene that makes the protein responsible for transporting salt and water across the cell membrane. People with cystic fibrosis have a mutated form of this protein.

UF scientists administered a low dose of a chemotherapy drug that weakened insulin-producing cells but did not destroy them. They then tested the animals' ability to regulate their blood sugar while fasting and after receiving glucose, simulating the rise in blood sugar that occurs after eating food.

Animals with the protein deficiency were more sensitive to the effects of the chemotherapy drug and had more difficulty regulating blood sugar levels, both while fasting and after receiving glucose. Mice that were still able to produce the crucial protein that prevents cystic fibrosis were able to maintain normal blood sugar levels, even after the drug had damaged some of their insulin-producing cells.

"This goes beyond improving our understanding of patients with cystic fibrosis-related diabetes; it also will help us improve our understanding of other forms of diabetes and help us work on strategies for a future cure," Stalvey said.

"Twenty-five percent of adolescents and 40 percent of adults with cystic fibrosis have diabetes, and diabetes is associated with poorer survival in this population," said Antoinette Moran, M.D., division head of pediatric endocrinology and director of the Pediatric Diabetes Program at the University of Minnesota Medical School. "The cause of cystic fibrosis-related diabetes is not completely understood, but it is clearly different from other forms of diabetes. The study by Stalvey and colleagues is important because it is the first to show that there are intrinsic abnormalities in the insulin-producing cells of the pancreas related to the genetic defect that causes cystic fibrosis."

Melanie Fridl Ross | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>