Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Curtain May be Closing on Scientific Water Controversy

28.06.2006
The curtain may be ringing down on a scientific controversy regarding the structure of water which arose two years ago. A new study by scientists with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has provided further evidence that the traditional structure of liquid water, in which the average water molecule is hydrogen-bonded to approximately four other water molecules in a tetrahedral arrangement, is correct.

Teresa Head-Gordon and Margaret Johnson, bioengineers with Berkeley Lab’s Physical Biosciences Division, and the University of California Berkeley/San Francisco Joint Graduate Group in Bioengineering, characterized the static structural organization of liquid water by analyzing data which was collected by Head-Gordon’s research group in 2002 using the ultrabright x-ray beams at Berkeley Lab’s Advanced Light Source (ALS). They found that while the “rings and chains” alternative model of liquid water may exist for the briefest of instants, the average structure is that of the familiar tetrahedral network.

“I think that most scientists who work in water, liquids or disordered systems will find our paper very convincing,” said Head-Gordon. “For some, it will be convincing enough so that it should end the controversy.”

Water covers 70 percent of the Earth’s surface and makes up 60 percent of the human body. Despite water’s ubiquitous presence in our lives, it remains a mystery. Whereas most substances contract when they solidify, water expands, making it less dense as a solid than as a liquid. Our lives depend upon liquid water but, given its light molecular weight, water at room temperature should be a gas. The key to understanding the strange but vital properties of liquid water is to fully understand its structure.

A single water molecule is V-shaped, but because the oxygen atom is more electronegative than the hydrogen atoms, the electrons in the molecule tend to gather towards the oxygen end, creating a slightly negative pole there and a slightly positive pole on the hydrogen side. The polarity of each water molecule results in a weak attraction between it and other water molecules, called a hydrogen bond. In the traditional scientific picture of water in the solid ice state, every individual water molecule forms four hydrogen bonds — two that are electron acceptors and two that are electron donors – through which it connects to its nearest neighbors. The result is a network of tetrahedrons. When ice melts, these bonds may become distorted and up to 20-percent of them broken. Despite these thermal distortions, liquid water still retains its tetrahedral network. This tetrahedral structure, coupled with strong hydrogen bonding, has long been thought to be the source of liquid water’s unusual properties.

Two years ago, however, scientists at Stanford University reported a series of experiments, using x-ray absorption spectroscopy and x-ray Raman scattering techniques, that indicated a radically different molecular arrangement for water. They reported that in the liquid state, more than 80 percent of the hydrogen bonds between water molecules were broken. On the average, they found each liquid water molecule formed only two hydrogen bonds — one electron donor and one electron acceptor. From this they concluded that in the liquid state, water molecules form a network of large rings or chains, rather than tetrahedrons.

The data analyzed by Head-Gordon and Johnson was collected through a technique called x-ray scattering, in which a beam of x-rays is sent through a sample and the photons are scattered by the electron density of the sample’s constituent atoms or molecules. The scattering cross-section or intensity of x-rays increases in direct proportion to the number of electrons.

“We used x-ray scattering because the technique enables you to characterize the time-averaged structural organization of atoms or molecules in a liquid or solid,” said Head-Gordon. “In our study, it provided us with information on both the long-range and local order.”

The x-ray scattering experiments analyzed by Head-Gordon and Johnson were conducted Head-Gordon in a collaboration with Greg Hura and Daniela Russo. These experiments were carried out at ALS beamline 7.3.3, an experimental station which provides exceptionally rapid collection of x-ray scattering data with extremely high spatial resolution. Berkeley Lab’s ALS is an electron synchrotron designed to accelerate electrons to energies of nearly 2 billion electron volts (GeV) and extract from them beams of x-ray light that are a hundred million times brighter than those from the best x-ray tubes.

In a paper which is now available on-line in the Proceedings of the National Academy of Sciences (PNAS), Head-Gordon and Johnson describe a model of liquid water they created in which a water molecule’s two hydrogen atoms formed hydrogen-bonded chains. This anti-tetrahedral model was then shown to be inconsistent with the long-range order exhibited in the x-ray scattering data taken at the ALS.

On the other hand, a model of liquid water that formed a tetrahedral structure was shown to agree with the long-range orders in the ALS x-ray scattering data.

“Our best understanding of liquid water at present is that charge asymmetry in water’s electron density arises from symmetry-breaking environments that fluctuate rapidly on the femtosecond timescale,” the authors stated in their PNAS paper. “Although these instantaneous asymmetries may be seen in an x-ray absorption spectroscopy (XAS) experiment, the long timescale (or ensemble) averages inherent in bulk structural experiments such as x-ray scattering tell us that they do not persist. It is important to reconcile the XAS data with the view of water as a tetrahedral hydrogen-bonded liquid.”

This research was supported in part by the U.S. Department of Energy’s Basic Energy Sciences Condensed Phase and Interfacial Molecular Sciences program.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>