Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals how ADHD drugs work in brain

28.06.2006
Although millions depend on medications such as Ritalin to quell symptoms of attention deficit hyperactivity disorder (ADHD), scientists have struggled to pinpoint how the drugs work in the brain.

But new work at the University of Wisconsin-Madison is now starting to clear up some of the mystery. Writing in the journal Biological Psychiatry, UW-Madison researchers report that ADHD drugs primarily target the prefrontal cortex (PFC), a region of the brain that is associated with attention, decision-making and an individual's expression of personality.

The finding could prove invaluable in the search for new ADHD treatments, and comes amidst deep public concern over the widespread abuse of existing ADHD medicines.

"There's been a lot of concern over giving a potentially addictive drug to a child [with ADHD]," says lead author Craig Berridge, a UW-Madison professor of psychology. "But in order to come up with a better drug we must first know what the existing drugs do."

A behavioral disorder that afflicts both children and adults, ADHD is marked by hyperactivity, impulsivity and an inability to concentrate. The National Institute of Mental Health estimates that 2 million children in the U.S. suffer from the condition, with between 30 to 70 percent of them continuing to exhibit symptoms in their adult years.

Despite public anxiety over the treatment of a behavioral condition with pharmacological drugs, doctors have continued to prescribe meds like Adderall, Ritalin and Dexedrine because - quite simply - they work better than anything else.

ADHD drugs fall into a class of medications known as stimulants. ADHD stimulants boost levels of two neurotransmitters, or chemical messengers in the brain, known as dopamine and norepinephrine. Dopamine is thought to play a role in memory formation and the onset of addictive behaviors, while norepinephrine has been linked with arousal and attentiveness.

Berridge notes that scientists have learned little about how ADHD drugs work because past studies have primarily examined the effects of the medicines at high doses. High-dose stimulants can cause dramatic spikes in neurotransmitter levels in the brain, which can in turn impair attention and heighten the risk of developing addiction.

"It is surprising that no one was looking at low-dose [ADHD] drugs because we know that the drugs are most effective only at low doses," says Berridge. "So we asked the natural question: what are these drugs doing at clinically relevant doses?"

To answer that question, Berridge and his team monitored neurotransmitter levels in three different brain regions thought to be targeted by ADHD drugs: the PFC and two smaller brain areas known as the accumbens which has been linked with processing "rewards," and the medial septum, which has been implicated in arousal and movement.

Working with rats, the researchers conducted laboratory and behavioral tests to ensure that animal drug doses were functionally equivalent to doses prescribed in humans. Then, using a type of brain probe - a process known as microdialysis - the UW-Madison team measured concentrations of dopamine and norepinephrine in the three different brain areas, both in the presence and absence of low-dose ADHD stimulants.

Under the influence of ADHD drugs, dopamine and norepinephrine levels increased in the rats' PFC. Levels in the accumbens and medial septum, however, remained much the same, the scientists found.

"Our work provides pretty important information on the importance of targeting the PFC when treating ADHD," says Berridge, "In particular it tells us that if we want to produce new ADHD drugs, we need to target [neurotransmitter] transmission in the PFC."

In the future, Berridge and his colleagues plan to look deeper within the PFC to gain more detailed insights into how ADHD meds act on nerves to enhance cognitive ability.

Other researchers who contributed to the study include UW-Madison co-authors David Devilbiss, Matthew Andrzejewski, Ann Kelley, Brooke Schmeichel, Christina Hamilton and Robert Spencer, and Yale Medical School researcher Amy Arnsten.

Craig Berridge | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>