Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study reveals how ADHD drugs work in brain

28.06.2006
Although millions depend on medications such as Ritalin to quell symptoms of attention deficit hyperactivity disorder (ADHD), scientists have struggled to pinpoint how the drugs work in the brain.

But new work at the University of Wisconsin-Madison is now starting to clear up some of the mystery. Writing in the journal Biological Psychiatry, UW-Madison researchers report that ADHD drugs primarily target the prefrontal cortex (PFC), a region of the brain that is associated with attention, decision-making and an individual's expression of personality.

The finding could prove invaluable in the search for new ADHD treatments, and comes amidst deep public concern over the widespread abuse of existing ADHD medicines.

"There's been a lot of concern over giving a potentially addictive drug to a child [with ADHD]," says lead author Craig Berridge, a UW-Madison professor of psychology. "But in order to come up with a better drug we must first know what the existing drugs do."

A behavioral disorder that afflicts both children and adults, ADHD is marked by hyperactivity, impulsivity and an inability to concentrate. The National Institute of Mental Health estimates that 2 million children in the U.S. suffer from the condition, with between 30 to 70 percent of them continuing to exhibit symptoms in their adult years.

Despite public anxiety over the treatment of a behavioral condition with pharmacological drugs, doctors have continued to prescribe meds like Adderall, Ritalin and Dexedrine because - quite simply - they work better than anything else.

ADHD drugs fall into a class of medications known as stimulants. ADHD stimulants boost levels of two neurotransmitters, or chemical messengers in the brain, known as dopamine and norepinephrine. Dopamine is thought to play a role in memory formation and the onset of addictive behaviors, while norepinephrine has been linked with arousal and attentiveness.

Berridge notes that scientists have learned little about how ADHD drugs work because past studies have primarily examined the effects of the medicines at high doses. High-dose stimulants can cause dramatic spikes in neurotransmitter levels in the brain, which can in turn impair attention and heighten the risk of developing addiction.

"It is surprising that no one was looking at low-dose [ADHD] drugs because we know that the drugs are most effective only at low doses," says Berridge. "So we asked the natural question: what are these drugs doing at clinically relevant doses?"

To answer that question, Berridge and his team monitored neurotransmitter levels in three different brain regions thought to be targeted by ADHD drugs: the PFC and two smaller brain areas known as the accumbens which has been linked with processing "rewards," and the medial septum, which has been implicated in arousal and movement.

Working with rats, the researchers conducted laboratory and behavioral tests to ensure that animal drug doses were functionally equivalent to doses prescribed in humans. Then, using a type of brain probe - a process known as microdialysis - the UW-Madison team measured concentrations of dopamine and norepinephrine in the three different brain areas, both in the presence and absence of low-dose ADHD stimulants.

Under the influence of ADHD drugs, dopamine and norepinephrine levels increased in the rats' PFC. Levels in the accumbens and medial septum, however, remained much the same, the scientists found.

"Our work provides pretty important information on the importance of targeting the PFC when treating ADHD," says Berridge, "In particular it tells us that if we want to produce new ADHD drugs, we need to target [neurotransmitter] transmission in the PFC."

In the future, Berridge and his colleagues plan to look deeper within the PFC to gain more detailed insights into how ADHD meds act on nerves to enhance cognitive ability.

Other researchers who contributed to the study include UW-Madison co-authors David Devilbiss, Matthew Andrzejewski, Ann Kelley, Brooke Schmeichel, Christina Hamilton and Robert Spencer, and Yale Medical School researcher Amy Arnsten.

Craig Berridge | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

Study shows how water could have flowed on 'cold and icy' ancient Mars

18.10.2017 | Physics and Astronomy

Navigational view of the brain thanks to powerful X-rays

18.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>