Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why are uniforms uniform? Because color helps us track objects

23.06.2006
If someone, somewhere hadn't thought to make team uniforms the same color, we might be stuck watching NBA finals or World Cup soccer matches with only two players and a ref.

It is that color coding, Johns Hopkins University psychologists have now demonstrated, that allows spectators, players and coaches at major sporting events to overcome humans' natural limit of tracking no more than three objects at a time.

"We've known for some time that human beings are limited to paying attention to no more than three objects at any one time," said Justin Halberda, assistant professor of psychological and brain sciences in the university's' Zanvyl Krieger School of Arts and Sciences.

"We report the rather surprising result that people can focus on more than three items at a time if those items share a common color," he said. "Our research suggests that the common color allows people to overcome the usual limit, because the 'color coding' enables them to perceive the separate individuals as a single set."

Thus: Miami Heat fans perceive their five white-jerseyed players as a unit in action against five blue-shirted Dallas Mavericks. England's football faithful can track their white-shirted field players against Sweden's yellow-garbed 10. (Since soccer goalies wear different colors than field players, though, fans of both clubs may have to think a moment before remembering which keeper goes with which team.)

The color-sorting ability comes in handy not just in sports. Poker players get a feel for the size of the pot by checking out different colored chips; a glance in the cooler tells a picnic organizer whether she has the right mix of red Coke cans and blue Pepsis.

Knowing that color is the key to making sense of large numbers of objects "informs our understanding of the structure of visual cognition and reveals that humans rely on early visual features to attend large sets in parallel," Halberda said. "Ongoing work in our lab is revealing which other features humans might use."

Halberda and Feigenson reached their conclusion by asking Johns Hopkins undergraduate volunteers to view series of colored dots flashing onto a black computer screen. The subjects were asked to estimate the number of dots in one randomly selected set on each trial.

Half the time, the subjects were told in advance whether to pay attention to, say, just the red dots or just the green ones. Otherwise, the subjects were required to store as much information as possible in visual memory from what they saw briefly onscreen

Some sets contained as many as 35 dots and subjects viewed the sets for less than one half second, which Halberda points out "is too short to allow the subjects to actually count the dots." Subjects were very accurate when told in advance which set to pay attention to, regardless of how many different colors were present, revealing that humans are able to select a set that shares a common color. Subjects were also very accurate at enumerating a color subset when asked after the flash of dots so long as the flash contained three or fewer colors.

"We found that humans are unable to store information from more than three sets at once," Halberda said. "This places an important constraint on how humans think about and interact with sets in the world."

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>