Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study links high levels of nitric oxide to infertility and sperm DNA damage

20.06.2006
Iranian scientists have linked a chemical that plays an essential role in many bodily functions to sperm DNA damage and male infertility, the 22nd annual conference of the European Society of Human Reproduction heard today (Monday).

Dr Iraj Amiri, embryology laboratory director at the IVF Centre, Fatemieh Hospital, Hamadan, Iran, said: “In recent years nitric oxide (NO) has been recognised as a molecule that plays an important role in regulating the biology and physiology of the reproductive system, and we know that it can affect human sperm functions, such as motility, viability and metabolism. At low concentrations it can have a positive effect on cells, but a negative effect at high concentrations.

“In our study we discovered that there were significantly higher concentrations of nitric oxide in the seminal plasma of infertile patients than in healthy men. High concentrations of NO were significantly correlated with greater sperm DNA damage, and low concentrations of NO were significantly correlated with better sperm motility.”

The researchers collected semen samples from 45 infertile patients and 70 healthy sperm donors. Most of the infertile men had low sperm counts or poor sperm motility. They measured levels of NO and used a test that can detect DNA damage and repair in individual cells (single cell gel electrophoresis (comet) assay) to determine DNA damage.

“We found that the NO levels in the infertile men were, on average, twice as high as in the fertile men,” said Dr Amiri. “However, at this stage we were unable to find the cut-off point at which NO levels switched from having a positive effect to having a negative effect.

“This study indicates that infertile men have higher levels of sperm DNA damage and NO concentration in their seminal plasma compared to fertile men, and that the sperm DNA damage may be caused by the NO.”

Dr Amiri said the infertile men may have had higher concentrations of NO because of male genital tract disease and associated factors, such as inflammation and infection, which can lead to NO over-production. There were no significant differences between the fertile and infertile men as to whether they lived in the country or in built-up, traffic-congested areas, although Dr Amiri did not rule out the role played by NO in air pollution.

“Our next step is to identify the role of some environmental factors such as air pollution, jobs, disease and smoking on over-production of NO in infertile males. We also want to find a cut-off level at which NO changes from having a beneficial effect on sperm to having a negative affect.”

Mary Rice | alfa
Further information:
http://www.eshre.com

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>