Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study links high levels of nitric oxide to infertility and sperm DNA damage

20.06.2006
Iranian scientists have linked a chemical that plays an essential role in many bodily functions to sperm DNA damage and male infertility, the 22nd annual conference of the European Society of Human Reproduction heard today (Monday).

Dr Iraj Amiri, embryology laboratory director at the IVF Centre, Fatemieh Hospital, Hamadan, Iran, said: “In recent years nitric oxide (NO) has been recognised as a molecule that plays an important role in regulating the biology and physiology of the reproductive system, and we know that it can affect human sperm functions, such as motility, viability and metabolism. At low concentrations it can have a positive effect on cells, but a negative effect at high concentrations.

“In our study we discovered that there were significantly higher concentrations of nitric oxide in the seminal plasma of infertile patients than in healthy men. High concentrations of NO were significantly correlated with greater sperm DNA damage, and low concentrations of NO were significantly correlated with better sperm motility.”

The researchers collected semen samples from 45 infertile patients and 70 healthy sperm donors. Most of the infertile men had low sperm counts or poor sperm motility. They measured levels of NO and used a test that can detect DNA damage and repair in individual cells (single cell gel electrophoresis (comet) assay) to determine DNA damage.

“We found that the NO levels in the infertile men were, on average, twice as high as in the fertile men,” said Dr Amiri. “However, at this stage we were unable to find the cut-off point at which NO levels switched from having a positive effect to having a negative effect.

“This study indicates that infertile men have higher levels of sperm DNA damage and NO concentration in their seminal plasma compared to fertile men, and that the sperm DNA damage may be caused by the NO.”

Dr Amiri said the infertile men may have had higher concentrations of NO because of male genital tract disease and associated factors, such as inflammation and infection, which can lead to NO over-production. There were no significant differences between the fertile and infertile men as to whether they lived in the country or in built-up, traffic-congested areas, although Dr Amiri did not rule out the role played by NO in air pollution.

“Our next step is to identify the role of some environmental factors such as air pollution, jobs, disease and smoking on over-production of NO in infertile males. We also want to find a cut-off level at which NO changes from having a beneficial effect on sperm to having a negative affect.”

Mary Rice | alfa
Further information:
http://www.eshre.com

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>