Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wild vs. lab rodent comparison supports hygiene hypothesis

19.06.2006
In a study comparing wild rodents with their laboratory counterparts, researchers at Duke University Medical Center have found evidence that may help to explain why people in industrialized societies that greatly stress hygiene have higher rates of allergy and autoimmune diseases than do people in less developed societies in which hygiene is harder to achieve or considered less critical.

The prevailing hypothesis concerning the development of allergy and probably autoimmune disease is the "hygiene hypothesis," which states that people in "hygienic" societies have higher rates of allergy and perhaps autoimmune disease because they -- and hence their immune systems -- have not been as challenged during everyday life by the host of microbes commonly found in the environment.

The study suggests that an overly hygienic environment could simultaneously increase the tendency to have allergic reactions and the tendency to acquire autoimmune disease, despite the fact that these two reactions represent two different types of immune responses.

The researchers added that their experimental model, which compares specific immune system responses of wild rodents to laboratory rodents, could open up a new approach to studying human disease and allergies that complements traditional scientific studies.

"Laboratory rodents live in a virtually germ- and parasite-free environment, and they receive extensive medical care -- conditions that are comparable to what humans living in Westernized, hygienic societies experience," said William Parker, Ph.D., an assistant professor of experimental surgery and senior member of the study team. "On the other hand, rodents living in the wild are exposed to a wide variety of microbes and parasites, much like humans living in societies without modern health care and where hygiene is harder to maintain."

The researchers published their results early on-line in the Scandinavian Journal of Immunology. The research was supported by the National Institutes of Health, the Duke University School of Medicine and the Fannie E. Rippel Foundation.

Up to 50 million Americans are estimated to suffer from allergies, and another 8 million have some form of autoimmune disorder, which occurs when an overactive immune system attacks tissues in the body. Examples of autoimmune disorders include lupus, insulin-dependant diabetes, rheumatoid arthritis and scleroderma.

"The most commonly accepted explanation for this high incidence of allergy and perhaps autoimmune disease is the hygiene hypothesis," Parker said. But this hypothesis has not been thoroughly tested in animal studies, he said, and the few studies conducted have focused on specific pathogens or parasites.

The Duke researchers decided to study the hypothesis by comparing the immune systems of wild house mice and common rats to laboratory mice and rats. The strength of this model, Parker said, is that it takes into account the totality of the animals living in their natural environment.

Specifically, the team focused the animals' production of various antibodies, known as immunoglobulins, either associated with autoimmune disease or associated with allergy. When an animal encounters a foreign invader, or antigen, its immune system kicks into action by producing antibodies that bind to the invader and destroy it.

Of the many classes of immunoglobulins (Ig), the IgG type is often involved in autoimmune disease, while the IgE type is likely a key defender against parasites and has been implicated in allergic reactions in humans, Parker said.

For their experiments, the researchers trapped wild rats in rural and urban settings in North Carolina and trapped wild mice in Wisconsin. They then measured the levels of antibodies in the blood of the wild rodents and compared the levels to those observed in mice and rats housed in Duke animal facilities.

All of the wild rodents had higher levels of IgG and IgE, with the IgE showing the most pronounced difference, Parker said. Additionally, the wild rodents had higher levels of a particular type of IgG called polyreactive, autoreactive IgG, which is associated with autoimmune disease in hygienic humans and rodents. However, the increased levels of these antibodies did not presumably cause untoward reactions in the wild rodents, Parker said.

That wild rodents had higher levels of IgE was not unexpected, he added, since wild rodents would likely have encountered parasites that activated the production of antibodies as protection. However, the production of polyreactive, autoreactive IgG by the wild rodents was unexpected: Polyreactive, autoreactive antibodies are always found to be a type of IgM, a different type of antibody than IgG, although all previous studies have focused on hygienic populations.

"These results appear to demonstrate that the environment has profound effects on the production of IgE and autoreactive IgG," Parker said. "While the production of these two antibody types lead to autoimmune disease and allergy, respectively, in the laboratory animals, their production seemed to represent a nonpathogenic, protective response to the environment by the wild rodents.

"We would expect that the targets of the autoreactive IgG and IgE in the 'hygienic' laboratory rodents would be substantially different from the targets of the same antibodies in the wild animals," he said.

In the wild animals, the autoreactive IgG likely bind to environmental antigens and therefore do not have deleterious effects, Parker said.

"However, autoreactive IgG in hygienic animals can bind avidly to the body's own cells, which can lead to autoimmune disease," he said. "In a parallel fashion, the IgE in the wild animals is protective because the antibodies bind to parasite antigens, while the same antibodies in laboratory animals would bind to abundant but harmless environmental antigens, leading to allergies to those antigens."

"These results are consistent with the idea that animals without access to modern medicine have high levels of autoimmune-like and allergic-like immune responses that represent appropriate responses to unknown factors in their environment," he said.

Although this study suggests that the environment plays an important role in how the immune systems in animals develop, genetics is likely to be involved as well, Parker said. He now is planning additional studies to help decipher the full role of genetics.

Also, his group is planning further studies of the hygiene hypothesis, using the new rodent model to examine other factors that may be contributing to the higher rates of allergy and autoimmune diseases of humans in industrialized societies, such as lack of exercise, increased mental stress and the consumption of processed food.

Duke members of the research team included Aditya Devalapalli, Aaron Lesher, Karl Shieh, Jonathan Solow, Mary Lou Everett and Arpana Edala. Other team members included Parker Whitt and Nolan Newton of the N.C. Department of Environmental and Natural Resources; and Renee Long of the U.S. Geological Survey's National Wildlife Health Center, in Madison, Wisc.

Richard Merritt | EurekAlert!
Further information:
http://www.mc.duke.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>