Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows that genetic quality of sperm deteriorates as men age

07.06.2006


New research indicates that the genetic quality of sperm worsens as men get older, increasing a man’s risk of being infertile, fathering unsuccessful pregnancies and passing along dwarfism and possibly other genetic diseases to his children.



A study led by scientists at Lawrence Livermore National Laboratory (LLNL) and the University of California, Berkeley, found a steady increase in sperm DNA fragmentation with increasing age of the study participants, along with increases in a gene mutation that causes achondroplasia, or dwarfism. The first changes were observed in men in their early reproductive years.

Earlier research by the same team indicated that male reproductive ability gradually worsens with age, as sperm counts decline and the sperm lose motility and their ability to swim in a straight line. In the current study, the researchers analyzed DNA damage, chromosomal abnormalities and gene mutations in semen samples from the same subjects – 97 healthy, non-smoking LLNL employees and retirees between 22 and 80 years old – and found that sperm motility showed a high correlation with DNA fragmentation, which is associated with increased risk of infertility and a reduced probability of fathering a successful pregnancy.


The study, "Advancing age has differential effects on DNA damage, chromatin integrity, gene mutations, and aneuploidies (chromosome abnormalities) in sperm," appears this week in the online edition of the Proceedings of the National Academy of Sciences.

"This study shows that men who wait until they’re older to have children are not only risking difficulties conceiving, they could also be increasing the risk of having children with genetic problems," said co-lead author Andrew Wyrobek of LLNL.

"We know that women have a biological time clock," said co-lead author Brenda Eskenazi of UC Berkeley’s School of Public Health, "with an increase in risk of miscarriage and producing children with trisomy (an extra chromosome, such as in Downs syndrome) as women age, and with a seemingly abrupt end of fertility around perimenopause. Our research suggests that men, too, have a biological time clock – only it is different. Men seem to have a gradual rather than an abrupt change in fertility and in the potential ability to produce viable healthy offspring."

Unlike in women, the researchers found no correlation between male aging and chromosome changes that cause Down’s syndrome and other forms of trisomies – such as Klinefelter syndrome, Turner syndrome, triple X syndrome, and XYY in offspring – that are associated with varying types and severity of infertility as well as physical and neurological abnormalities. They did conclude, however, that some older men could be at risk for fathering children with dwarfism, and that "a small fraction of men are at increased risks for transmitting multiple genetic and chromosomal defects."

In the case of Apert syndrome, a serious disfiguring birth defect, the researchers found that the effects of advancing male age may differ among different groups of men. Apert syndrome gene mutations increased in the sperm of a second group of men recruited in the Baltimore inner city by researchers at Johns Hopkins Medical Center, while no age effects were observed in the group of men recruited in California.

Wyrobek noted that these differences in finding suggest that factors other than age may be involved, raising the possibility that socioeconomic or dietary factors or ethnic background may also be involved in how age affects the quality of human sperm.

"Since some forms of genomic damage change with age and others don’t," he said, "overall genomic sperm quality cannot be measured by any single sperm test." Dwarfism, a genetic disorder that affects bone growth, is the most common growth-related birth defect, occurring in about one in every 25,000 births. It occurs in all races and in both males and females and causes affected individuals to have very short arms and legs, limiting their full adult height to about four feet.

Wyrobek, Eskenazi and their colleagues analyzed semen from the volunteers using a variety of state-of-the art methods for detecting genetic and chromosomal defects in human sperm. A flow cytometer method was used to detect DNA fragmentation and chromatin defects in collaboration with co-author Don Evenson at South Dakota State University. Gene mutations in the achrondroplasia gene and in the Apert sydrome gene were measured using highly sensitive PCR–based methods developed by co-authors Ethylin Jabs at Johns Hopkins and Norman Arnheim at USC in Los Angeles. The team also used a Livermore-developed chromosome analysis system called sperm FISH (fluorescence in-situ hybridization). They found a strong correlation between age and sperm DNA fragmentation, with genetic mutations associated with dwarfism gradually increasing by about two per cent for every year of age.

The study included at least 15 men from each age decade from 20 to 60 years, and 25 men 60 to 80 years old. The researchers gathered extensive medical, lifestyle and occupational exposure history from the men and excluded current cigarette smokers and men with current fertility or reproductive problems, a previous semen analysis with zero sperm count, vasectomy, history of prostate cancer or undescended testicle, or exposure to chemotherapy or radiation treatment for cancer.

Understanding the effects of paternal age has become more important as increasing numbers of men are having children at older ages. Since 1980 there has been about a 40 percent increase in 35- to 49-year-old men fathering children, and a 20 percent decrease in fathers under 30. Studies have also shown that it takes longer for older men to conceive, even when the age of the mother is considered.

Other authors of the study are Francesca Pearson from LLNL, Suzanne Young from UC Berkeley’s School of Public Health, Irene Tiemann-Boege from UCLA, and Rivka Glaser from Massachusetts College of Liberal Arts.

Charlie Osolin | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>