Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where we change our mind

01.06.2006


Whether finding your way through an unfamiliar neighborhood to a friend’s house or deciding on a political candidate, your brain is adept at adapting. It can make decisions based on incomplete information and update those decisions based on new information.



The nature of such sophisticated decision making in the cerebral cortex, which is responsible for high-level processing, has been "poorly studied and little understood," according to Wako Yoshida and Shin Ishii of the Nara Institute of Science and Technology. Now, however, in an article in the June 1, 2006, Neuron, they describe experiments that enabled them to tease apart how different regions of the cerebral cortex process uncertain information and integrate it into decision making.

In particular, their aim was to analyze subjects’ navigation through a virtual maze, to explore how different cortical regions function in solving "partially observable decision-making problems."


"In navigation tasks, such as that investigated here, an individual must constantly maintain an estimate as to his/her current location as a guide for deciding the next turn," they wrote, "but in the absence of incontrovertible a priori information, this estimate is best represented by the subject’s belief. As information is acquired through observation, this belief may become increasingly convincing or alternatively may be discarded in favor of a new one. This is an intuitive way of making estimations that are appropriate for many real-world behaviors, adopted also by a wide variety of intelligent machines.…," they wrote.

In their experiments, the researchers first taught volunteer subjects the layout of a computer-generated 3D "wire-frame" maze. Then, while the subjects’ brains were being scanned using functional magnetic resonance, the researchers "placed" the subjects in different parts of the maze and analyzed activation of cerebral cortical regions as the subjects made a series of decisions to navigate their way to a specified goal. Functional MRI involves using harmless magnetic fields and radio waves to image blood flow in brain regions, which reflects activity.

Importantly, Yoshida and Ishii used sophisticated statistical probabilistic analysis of the subjects’ movements to overcome a major obstacle to such studies. That obstacle is that the beliefs of the subjects during the experiment could not be determined unequivocally; thus, those beliefs could not be correlated with brain function.

However, the researchers’ statistical analysis of the subject’s navigation decisions enabled them to infer which of two "cognitive states" the subject was in, to give the researchers insight into which cortical regions were active during the states. One such cognitive state was a belief about where the subject was in the maze, and the other was a set of "operant" states. These operant states were a "proceed or update mode" or a "reevaluate or back-track mode."

Analyzing the brain regions active during these states, Yoshidi and Ishii pinpointed which regions of the subjects’ cerebral cortex were active during the different processes involved in "changing their minds." Specifically, the researchers found that "belief maintenance" processes are performed principally by a region called the anterior prefrontal cortex, and "belief back-track" processes occur in the medial prefrontal cortex.

"Our results provide evidence that activity in different regions of the prefrontal cortex reflect critical computational components involved in decision making in uncertain environments," concluded the researchers. "This fits well with the proposed role of these regions in decision making, which is likely to be crucial in complex real-world environments. We also illustrate the utility of statistical model-based inference and regression in delineating key task parameters that may be represented in spatially distinct brain regions," they concluded.

Heidi Hardman | EurekAlert!
Further information:
http://www.neuron.org
http://www.cell.com

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>