Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where we change our mind

01.06.2006


Whether finding your way through an unfamiliar neighborhood to a friend’s house or deciding on a political candidate, your brain is adept at adapting. It can make decisions based on incomplete information and update those decisions based on new information.



The nature of such sophisticated decision making in the cerebral cortex, which is responsible for high-level processing, has been "poorly studied and little understood," according to Wako Yoshida and Shin Ishii of the Nara Institute of Science and Technology. Now, however, in an article in the June 1, 2006, Neuron, they describe experiments that enabled them to tease apart how different regions of the cerebral cortex process uncertain information and integrate it into decision making.

In particular, their aim was to analyze subjects’ navigation through a virtual maze, to explore how different cortical regions function in solving "partially observable decision-making problems."


"In navigation tasks, such as that investigated here, an individual must constantly maintain an estimate as to his/her current location as a guide for deciding the next turn," they wrote, "but in the absence of incontrovertible a priori information, this estimate is best represented by the subject’s belief. As information is acquired through observation, this belief may become increasingly convincing or alternatively may be discarded in favor of a new one. This is an intuitive way of making estimations that are appropriate for many real-world behaviors, adopted also by a wide variety of intelligent machines.…," they wrote.

In their experiments, the researchers first taught volunteer subjects the layout of a computer-generated 3D "wire-frame" maze. Then, while the subjects’ brains were being scanned using functional magnetic resonance, the researchers "placed" the subjects in different parts of the maze and analyzed activation of cerebral cortical regions as the subjects made a series of decisions to navigate their way to a specified goal. Functional MRI involves using harmless magnetic fields and radio waves to image blood flow in brain regions, which reflects activity.

Importantly, Yoshida and Ishii used sophisticated statistical probabilistic analysis of the subjects’ movements to overcome a major obstacle to such studies. That obstacle is that the beliefs of the subjects during the experiment could not be determined unequivocally; thus, those beliefs could not be correlated with brain function.

However, the researchers’ statistical analysis of the subject’s navigation decisions enabled them to infer which of two "cognitive states" the subject was in, to give the researchers insight into which cortical regions were active during the states. One such cognitive state was a belief about where the subject was in the maze, and the other was a set of "operant" states. These operant states were a "proceed or update mode" or a "reevaluate or back-track mode."

Analyzing the brain regions active during these states, Yoshidi and Ishii pinpointed which regions of the subjects’ cerebral cortex were active during the different processes involved in "changing their minds." Specifically, the researchers found that "belief maintenance" processes are performed principally by a region called the anterior prefrontal cortex, and "belief back-track" processes occur in the medial prefrontal cortex.

"Our results provide evidence that activity in different regions of the prefrontal cortex reflect critical computational components involved in decision making in uncertain environments," concluded the researchers. "This fits well with the proposed role of these regions in decision making, which is likely to be crucial in complex real-world environments. We also illustrate the utility of statistical model-based inference and regression in delineating key task parameters that may be represented in spatially distinct brain regions," they concluded.

Heidi Hardman | EurekAlert!
Further information:
http://www.neuron.org
http://www.cell.com

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>