Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fear circuit flares as bipolar youth misread faces

30.05.2006


The left amygdala and related structures (yellow area where lines intersect) are part of an emotion-regulating brain circuit where children with bipolar disorder showed greater activation than controls when rating their fear of neutral faces. Structural MRI image with functional MRI data superimposed. Credit: Source: NIMH Mood and Anxiety Disorders Program


Youth with bipolar disorder misread facial expressions as hostile and show heightened neural reactions when they focus on emotional aspects of neutral faces, researchers at the National Institutes of Health’s (NIH) National Institute of Mental Health (NIMH) have discovered. The study provides some of the first clues to the underlying workings of the episodes of mania and depression that disrupt friendships, school, and family life in up to one percent of children.

Brain scans showed that the left amygdala, a fear hub, and related structures, activated more in youth with the disorder than in healthy youth when asked to rate the hostility of an emotionally neutral face, as opposed to a non-emotional feature, such as nose width. The more patients misinterpreted the faces as hostile, the more their amygdala flared. Such a face-processing deficit could help account for the poor social skills, aggression, and irritability that characterizes the disorder in children, suggest Drs. Ellen Leibenluft, Brendan Rich, Daniel Pine, NIMH Mood and Anxiety Disorders Program, and colleagues, who report on their findings May 29, 2006 in the Proceedings of the National Academy of Sciences.

"Since children seem to have a more severe form of the disorder, they may provide a clearer window into the underlying illness process than adult onset cases," explained Leibenluft. "Our results suggest that children with bipolar disorder see emotion where other people don’t. Our results also suggest that bipolar disorder likely stems from impaired development of specific brain circuits, as is thought to occur in schizophrenia and other mental illnesses."



Magnetic Resonance Imaging (MRI) studies have shown that, unlike in adults with the illness, the amygdala is consistently smaller in bipolar children than in healthy age-mates. Also, the NIMH researchers had found earlier that bipolar children falter at identifying facial emotion and have difficulty regulating their attention when frustrated.

Using functional MRI, the researchers measured brain activity in 22 bipolar youth and 21 healthy subjects while they rated faces. In addition to the amygdala, other parts of the emotion-regulating circuit – nucleus accumbens, putamen, and left prefrontal cortex – were also hyperactive in patients, compared to healthy peers, during the emotional tasks. Patients rated themselves as more afraid, and they rated the faces as more hostile, compared to healthy peers. The groups did not differ on nose width ratings, confirming that the differences were specific to perceiving emotional processes.

"By finding a brain imaging trait that may be more selective than current clinical criteria, this line of research might help us refine our definition of pediatric bipolar disorder," said NIMH Director Thomas Insel, M.D. "The researchers are following-up with imaging studies of children with bipolar spectrum disorders and healthy children who are at genetic risk for developing the disorder to see if they also have the same amygdala over-activation."

Also participating in the study were: Dr. Deborah Vinton, Dr. Rebecca Hommer, Dr. Stephen Fromm, Lisa Berghorst, NIMH; Dr. Roxann Roberson-Nay, Virginia Commonwealth University; Dr.Erin McClure, Georgia State University.

Jules Asher | EurekAlert!
Further information:
http://www.nih.gov

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>