Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virginia study urges early emphasis on science

29.05.2006


Future of US science depends on it



What do you want to be when you grow up? Eighth-graders asked this question in 1988 were two to three times more likely to earn science and engineering degrees in college if their answer was a science-related career.

The National Research Council recently reported the United States is slipping in its leadership in science and technology fields and recommended "vastly improving" K-12 education in math and science.


Research by Robert H. Tai, assistant professor of science education at the University of Virginia’s Curry School of Education, agrees with this recommendation. At a time when more schools are focusing on reading and math to beef up standardized test scores, Tai’s research, to be published in the May 26 issue of Science magazine, suggests this focus may ignore the importance of an early emphasis on science.

Tai and U.Va. researchers Christine Qui Liu, Adam V. Maltese and Xitao Fan analyzed data from the National Educational Longitudinal Study, begun in 1988, to see if expectations about science made a difference in later choice of college academic study.

"To the question, does it matter if a person decides early on whether to pursue science? The answer is yes," Tai said. "While the outcome may not be surprising, in light of the many stories we’ve all heard about the lives of famous scientists, this study put this notion to the test and found a link between early life expectations and future life outcomes."

Tai and the research team looked at a random national sample of 3,359 students who had first been surveyed in eighth grade and who received college degrees by 2000. The study focused on the survey question, "What kind of work do you expect to be doing when you are 30 years old?" Connecting this question to data collected from the same students years later, the researchers could identify those who had selected the option of science-related jobs compared to students who chose nonscience jobs and then majored in life sciences or physical sciences and engineering. Those youth who expected to go into the sciences were two times more likely to get their degree in a life science and three times more likely to get a degree in the physical sciences or engineering than students who chose other career options.

The study controlled for variables including students’ demographics, academic characteristics and achievement scores, as well as their parents’ backgrounds, such as education and professional versus nonprofessional occupation.

Although mathematics was important, mathematics achievement doesn’t take the place of science interest, Tai found. The results indicate that average eighth-grade math achievers with science-related expectations are much more likely to earn physical science or engineering degrees than high math achievers without this interest.

Lately, federal policy has put more emphasis on high school curricula, ignoring science education for elementary and middle school grades. Tai’s concern is that teachers are increasingly teaching to the test because under the federal NCLB regulations, their schools will get penalized if students don’t pass and they don’t make adequate yearly progress.

"Life is not a standardized test. We should use testing to help us learn more about how best to teach children. But kids are not being encouraged to go into science by testing."

The paper concludes: "Although our current analysis does not provide proof of an uninterrupted causal chain of influence, we should pay close attention to children’s early exposure to science at the middle and even younger grades."

Anne Bromley | EurekAlert!
Further information:
http://www.virginia.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>