Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virginia study urges early emphasis on science

29.05.2006


Future of US science depends on it



What do you want to be when you grow up? Eighth-graders asked this question in 1988 were two to three times more likely to earn science and engineering degrees in college if their answer was a science-related career.

The National Research Council recently reported the United States is slipping in its leadership in science and technology fields and recommended "vastly improving" K-12 education in math and science.


Research by Robert H. Tai, assistant professor of science education at the University of Virginia’s Curry School of Education, agrees with this recommendation. At a time when more schools are focusing on reading and math to beef up standardized test scores, Tai’s research, to be published in the May 26 issue of Science magazine, suggests this focus may ignore the importance of an early emphasis on science.

Tai and U.Va. researchers Christine Qui Liu, Adam V. Maltese and Xitao Fan analyzed data from the National Educational Longitudinal Study, begun in 1988, to see if expectations about science made a difference in later choice of college academic study.

"To the question, does it matter if a person decides early on whether to pursue science? The answer is yes," Tai said. "While the outcome may not be surprising, in light of the many stories we’ve all heard about the lives of famous scientists, this study put this notion to the test and found a link between early life expectations and future life outcomes."

Tai and the research team looked at a random national sample of 3,359 students who had first been surveyed in eighth grade and who received college degrees by 2000. The study focused on the survey question, "What kind of work do you expect to be doing when you are 30 years old?" Connecting this question to data collected from the same students years later, the researchers could identify those who had selected the option of science-related jobs compared to students who chose nonscience jobs and then majored in life sciences or physical sciences and engineering. Those youth who expected to go into the sciences were two times more likely to get their degree in a life science and three times more likely to get a degree in the physical sciences or engineering than students who chose other career options.

The study controlled for variables including students’ demographics, academic characteristics and achievement scores, as well as their parents’ backgrounds, such as education and professional versus nonprofessional occupation.

Although mathematics was important, mathematics achievement doesn’t take the place of science interest, Tai found. The results indicate that average eighth-grade math achievers with science-related expectations are much more likely to earn physical science or engineering degrees than high math achievers without this interest.

Lately, federal policy has put more emphasis on high school curricula, ignoring science education for elementary and middle school grades. Tai’s concern is that teachers are increasingly teaching to the test because under the federal NCLB regulations, their schools will get penalized if students don’t pass and they don’t make adequate yearly progress.

"Life is not a standardized test. We should use testing to help us learn more about how best to teach children. But kids are not being encouraged to go into science by testing."

The paper concludes: "Although our current analysis does not provide proof of an uninterrupted causal chain of influence, we should pay close attention to children’s early exposure to science at the middle and even younger grades."

Anne Bromley | EurekAlert!
Further information:
http://www.virginia.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>