Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Marijuana-derived drug suppresses bladder pain in animal models

23.05.2006


IP 751, a potent synthetic analog of a metabolite of THC--the principal active ingredient of marijuana--effectively suppresses pain in hypersensitive bladder disorders such as interstitial cystitis (IC), according to animal model study results presented today at the annual meeting of the American Urological Association.



IP 751 is a potent anti-inflammatory and a powerful analgesic, although the mechanisms by which it works are unknown. However, since the drug is insoluble in water, its administration directly into the bladder is difficult.

For the study, researchers at the University of Pittsburgh School of Medicine addressed the hydrophobic properties of IP 751 by introducing the drug into a liposome, a tiny sac surrounded by fatty acids, allowing for the drug to be introduced directly into the bladders of rat models of varying degrees of bladder inflammation. IP 751 significantly suppressed bladder overactivity in both animal models. Bladder overactivity is the underlying cause of irritation and pain in the bladder.


"Interstitial cystitis is a difficult disease to treat, and not all treatments work well on all patients," said Michael B. Chancellor, M.D., professor of urology and gynecology at the University of Pittsburgh School of Medicine. "Any new option we can give our patients to alleviate their painful symptoms is very important."

According to the National Institute of Diabetes and Digestive and Kidney Diseases, 700,000 Americans have IC; 90 percent are women. IC is one of the chronic pelvic pain disorders, defined by recurring discomfort or pain in the bladder and surrounding pelvic region. Symptoms vary and can include any combination of mild to severe pain, pressure and tenderness in the bladder and pelvic area, and an urgent and/or frequent need to urinate. In IC, the bladder wall may become scarred or irritated, and pinpoint bleeding may appear on the bladder wall.

Clare Collins | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>