Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Test for Dioxin Sensitivity in Wildlife Could Result from New Study

22.05.2006


Why are chickens so sensitive to dioxins, but terns seem much more resistant, despite their exposure through eating dioxin-tainted fish? The life-or-death difference researchers have found can be partially explained by two amino acids in the chain of 858 amino acids that form one critical protein.



The slight difference apparently changes the three-dimensional shape of the protein, known as the aryl hydrocarbon receptor, allowing dioxin to bind more easily to the chicken receptor’s dioxin-binding site, like a key in a lock, and trigger harmful effects. The dioxin “key” does not fit as smoothly into the tern receptor’s binding site.

The findings, reported recently in the Proceedings of the National Academy of Sciences, advance the possibility of a test that wildlife managers could use to assess dioxin sensitivity in wild animal populations, said Sibel Karchner, a researcher at Woods Hole Oceanographic Institution (WHOI) and lead author of the PNAS paper.


Dioxins are a group of chemical compounds with similar chemical structures and biological characteristics. Present in the environment worldwide, they are formed as an unintentional by-product of many industrial processes involving chlorine such as waste incineration, chemical and pesticide manufacturing, the production of PVC plastics and paper, and from forest fires and backyard burning. Dioxins and structurally related chemicals can cause an array of disorders in most vertebrate animals and have been linked to cancer and reproductive abnormalities in humans. Dioxin was the primary toxic component of the defoliant Agent Orange, and was found at Love Canal in Niagara Falls, NY.

In virtually all vertebrates, dioxin sticks or binds to the aryl hydrocarbon receptor, or AHR. Like any protein, AHR is coded for by a gene, whose DNA sequence dictates the exact sequence of amino acid “building blocks” joined together to make the protein. The particular sequence of amino acids determines how the protein folds into a specific three-dimensional shape.

Somewhere in that folded shape is a region where the dioxin molecule fits—the binding site. Once bound, the AHR-dioxin combination alters the function of other genes in the cell, triggering harmful effects. Without that “lock” region, the dioxin “key” cannot bind and trigger those harmful effects. Laboratory mice engineered to lack AHR are not affected by dioxin, while mice with AHR are poisoned by it.

Chicken and tern AHR proteins are 858 and 859 amino acids long, respectively. Karchner and colleagues used molecular cloning techniques to determine the entire sequence of amino acids for each receptor protein. They showed that the chicken AHR has a 7-fold higher affinity for dioxin than the tern AHR, providing a molecular explanation for at least part of the difference in sensitivity between these species. They then traced the difference in affinity to the dioxin-binding regions of the chicken and tern proteins. Additional experiments showed that only two of the 168 amino acids in this region were responsible for the difference.

“These two amino acids account for the entire difference in binding affinity for dioxin, and therefore have a major impact on the difference in sensitivity between chicken and tern,” Karchner said.

The AHR protein has been well studied in mammals, but has not been as extensively characterized in non-mammalian vertebrates. The protein has a similar structure in different animals, which suggests that it originated long ago in evolutionary time. “It is a very old protein, and many of the amino acid sequences in this region of the protein have been kept similar over time⎯what is known as highly conserved sequences,” said Karchner. This high similarity allows the researchers to compare the AHR among different species. Cloning, in vitro expression, and analysis of protein function provide a promising method to study the potential impact of environmental contaminants on protected species.

“We looked at only two birds, the domestic chicken (Gallus gallus) and the common tern (Sterna hirundo),” Karchner said, “but you might be able to predict sensitivity of other wild animals by looking at a short section of a gene or protein sequence rather than conducting extensive studies on entire, large genes.” The authors report that other "less-sensitive" bird species share the same two critical amino acids as the common tern.

The research team included Karchner, Diana G. Franks and Mark E. Hahn of WHOI and Sean W. Kennedy from Environment Canada, National Wildlife Research Centre. In collaboration with Hahn and Karchner, Kennedy is continuing to collect samples from many species of wild birds to compare their AHRs. Hahn and others are pursuing similar studies in several species of marine mammals.

The study was supported with funding from the Woods Hole Sea Grant program.

Shelley Dawicki | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Heavy nitrogen molecules reveal planetary-scale tug-of-war

20.11.2017 | Earth Sciences

Taking a spin on plasma space tornadoes with NASA observations

20.11.2017 | Physics and Astronomy

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>