Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Test for Dioxin Sensitivity in Wildlife Could Result from New Study

22.05.2006


Why are chickens so sensitive to dioxins, but terns seem much more resistant, despite their exposure through eating dioxin-tainted fish? The life-or-death difference researchers have found can be partially explained by two amino acids in the chain of 858 amino acids that form one critical protein.



The slight difference apparently changes the three-dimensional shape of the protein, known as the aryl hydrocarbon receptor, allowing dioxin to bind more easily to the chicken receptor’s dioxin-binding site, like a key in a lock, and trigger harmful effects. The dioxin “key” does not fit as smoothly into the tern receptor’s binding site.

The findings, reported recently in the Proceedings of the National Academy of Sciences, advance the possibility of a test that wildlife managers could use to assess dioxin sensitivity in wild animal populations, said Sibel Karchner, a researcher at Woods Hole Oceanographic Institution (WHOI) and lead author of the PNAS paper.


Dioxins are a group of chemical compounds with similar chemical structures and biological characteristics. Present in the environment worldwide, they are formed as an unintentional by-product of many industrial processes involving chlorine such as waste incineration, chemical and pesticide manufacturing, the production of PVC plastics and paper, and from forest fires and backyard burning. Dioxins and structurally related chemicals can cause an array of disorders in most vertebrate animals and have been linked to cancer and reproductive abnormalities in humans. Dioxin was the primary toxic component of the defoliant Agent Orange, and was found at Love Canal in Niagara Falls, NY.

In virtually all vertebrates, dioxin sticks or binds to the aryl hydrocarbon receptor, or AHR. Like any protein, AHR is coded for by a gene, whose DNA sequence dictates the exact sequence of amino acid “building blocks” joined together to make the protein. The particular sequence of amino acids determines how the protein folds into a specific three-dimensional shape.

Somewhere in that folded shape is a region where the dioxin molecule fits—the binding site. Once bound, the AHR-dioxin combination alters the function of other genes in the cell, triggering harmful effects. Without that “lock” region, the dioxin “key” cannot bind and trigger those harmful effects. Laboratory mice engineered to lack AHR are not affected by dioxin, while mice with AHR are poisoned by it.

Chicken and tern AHR proteins are 858 and 859 amino acids long, respectively. Karchner and colleagues used molecular cloning techniques to determine the entire sequence of amino acids for each receptor protein. They showed that the chicken AHR has a 7-fold higher affinity for dioxin than the tern AHR, providing a molecular explanation for at least part of the difference in sensitivity between these species. They then traced the difference in affinity to the dioxin-binding regions of the chicken and tern proteins. Additional experiments showed that only two of the 168 amino acids in this region were responsible for the difference.

“These two amino acids account for the entire difference in binding affinity for dioxin, and therefore have a major impact on the difference in sensitivity between chicken and tern,” Karchner said.

The AHR protein has been well studied in mammals, but has not been as extensively characterized in non-mammalian vertebrates. The protein has a similar structure in different animals, which suggests that it originated long ago in evolutionary time. “It is a very old protein, and many of the amino acid sequences in this region of the protein have been kept similar over time⎯what is known as highly conserved sequences,” said Karchner. This high similarity allows the researchers to compare the AHR among different species. Cloning, in vitro expression, and analysis of protein function provide a promising method to study the potential impact of environmental contaminants on protected species.

“We looked at only two birds, the domestic chicken (Gallus gallus) and the common tern (Sterna hirundo),” Karchner said, “but you might be able to predict sensitivity of other wild animals by looking at a short section of a gene or protein sequence rather than conducting extensive studies on entire, large genes.” The authors report that other "less-sensitive" bird species share the same two critical amino acids as the common tern.

The research team included Karchner, Diana G. Franks and Mark E. Hahn of WHOI and Sean W. Kennedy from Environment Canada, National Wildlife Research Centre. In collaboration with Hahn and Karchner, Kennedy is continuing to collect samples from many species of wild birds to compare their AHRs. Hahn and others are pursuing similar studies in several species of marine mammals.

The study was supported with funding from the Woods Hole Sea Grant program.

Shelley Dawicki | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>