Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Test for Dioxin Sensitivity in Wildlife Could Result from New Study

22.05.2006


Why are chickens so sensitive to dioxins, but terns seem much more resistant, despite their exposure through eating dioxin-tainted fish? The life-or-death difference researchers have found can be partially explained by two amino acids in the chain of 858 amino acids that form one critical protein.



The slight difference apparently changes the three-dimensional shape of the protein, known as the aryl hydrocarbon receptor, allowing dioxin to bind more easily to the chicken receptor’s dioxin-binding site, like a key in a lock, and trigger harmful effects. The dioxin “key” does not fit as smoothly into the tern receptor’s binding site.

The findings, reported recently in the Proceedings of the National Academy of Sciences, advance the possibility of a test that wildlife managers could use to assess dioxin sensitivity in wild animal populations, said Sibel Karchner, a researcher at Woods Hole Oceanographic Institution (WHOI) and lead author of the PNAS paper.


Dioxins are a group of chemical compounds with similar chemical structures and biological characteristics. Present in the environment worldwide, they are formed as an unintentional by-product of many industrial processes involving chlorine such as waste incineration, chemical and pesticide manufacturing, the production of PVC plastics and paper, and from forest fires and backyard burning. Dioxins and structurally related chemicals can cause an array of disorders in most vertebrate animals and have been linked to cancer and reproductive abnormalities in humans. Dioxin was the primary toxic component of the defoliant Agent Orange, and was found at Love Canal in Niagara Falls, NY.

In virtually all vertebrates, dioxin sticks or binds to the aryl hydrocarbon receptor, or AHR. Like any protein, AHR is coded for by a gene, whose DNA sequence dictates the exact sequence of amino acid “building blocks” joined together to make the protein. The particular sequence of amino acids determines how the protein folds into a specific three-dimensional shape.

Somewhere in that folded shape is a region where the dioxin molecule fits—the binding site. Once bound, the AHR-dioxin combination alters the function of other genes in the cell, triggering harmful effects. Without that “lock” region, the dioxin “key” cannot bind and trigger those harmful effects. Laboratory mice engineered to lack AHR are not affected by dioxin, while mice with AHR are poisoned by it.

Chicken and tern AHR proteins are 858 and 859 amino acids long, respectively. Karchner and colleagues used molecular cloning techniques to determine the entire sequence of amino acids for each receptor protein. They showed that the chicken AHR has a 7-fold higher affinity for dioxin than the tern AHR, providing a molecular explanation for at least part of the difference in sensitivity between these species. They then traced the difference in affinity to the dioxin-binding regions of the chicken and tern proteins. Additional experiments showed that only two of the 168 amino acids in this region were responsible for the difference.

“These two amino acids account for the entire difference in binding affinity for dioxin, and therefore have a major impact on the difference in sensitivity between chicken and tern,” Karchner said.

The AHR protein has been well studied in mammals, but has not been as extensively characterized in non-mammalian vertebrates. The protein has a similar structure in different animals, which suggests that it originated long ago in evolutionary time. “It is a very old protein, and many of the amino acid sequences in this region of the protein have been kept similar over time⎯what is known as highly conserved sequences,” said Karchner. This high similarity allows the researchers to compare the AHR among different species. Cloning, in vitro expression, and analysis of protein function provide a promising method to study the potential impact of environmental contaminants on protected species.

“We looked at only two birds, the domestic chicken (Gallus gallus) and the common tern (Sterna hirundo),” Karchner said, “but you might be able to predict sensitivity of other wild animals by looking at a short section of a gene or protein sequence rather than conducting extensive studies on entire, large genes.” The authors report that other "less-sensitive" bird species share the same two critical amino acids as the common tern.

The research team included Karchner, Diana G. Franks and Mark E. Hahn of WHOI and Sean W. Kennedy from Environment Canada, National Wildlife Research Centre. In collaboration with Hahn and Karchner, Kennedy is continuing to collect samples from many species of wild birds to compare their AHRs. Hahn and others are pursuing similar studies in several species of marine mammals.

The study was supported with funding from the Woods Hole Sea Grant program.

Shelley Dawicki | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>