Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Test for Dioxin Sensitivity in Wildlife Could Result from New Study

22.05.2006


Why are chickens so sensitive to dioxins, but terns seem much more resistant, despite their exposure through eating dioxin-tainted fish? The life-or-death difference researchers have found can be partially explained by two amino acids in the chain of 858 amino acids that form one critical protein.



The slight difference apparently changes the three-dimensional shape of the protein, known as the aryl hydrocarbon receptor, allowing dioxin to bind more easily to the chicken receptor’s dioxin-binding site, like a key in a lock, and trigger harmful effects. The dioxin “key” does not fit as smoothly into the tern receptor’s binding site.

The findings, reported recently in the Proceedings of the National Academy of Sciences, advance the possibility of a test that wildlife managers could use to assess dioxin sensitivity in wild animal populations, said Sibel Karchner, a researcher at Woods Hole Oceanographic Institution (WHOI) and lead author of the PNAS paper.


Dioxins are a group of chemical compounds with similar chemical structures and biological characteristics. Present in the environment worldwide, they are formed as an unintentional by-product of many industrial processes involving chlorine such as waste incineration, chemical and pesticide manufacturing, the production of PVC plastics and paper, and from forest fires and backyard burning. Dioxins and structurally related chemicals can cause an array of disorders in most vertebrate animals and have been linked to cancer and reproductive abnormalities in humans. Dioxin was the primary toxic component of the defoliant Agent Orange, and was found at Love Canal in Niagara Falls, NY.

In virtually all vertebrates, dioxin sticks or binds to the aryl hydrocarbon receptor, or AHR. Like any protein, AHR is coded for by a gene, whose DNA sequence dictates the exact sequence of amino acid “building blocks” joined together to make the protein. The particular sequence of amino acids determines how the protein folds into a specific three-dimensional shape.

Somewhere in that folded shape is a region where the dioxin molecule fits—the binding site. Once bound, the AHR-dioxin combination alters the function of other genes in the cell, triggering harmful effects. Without that “lock” region, the dioxin “key” cannot bind and trigger those harmful effects. Laboratory mice engineered to lack AHR are not affected by dioxin, while mice with AHR are poisoned by it.

Chicken and tern AHR proteins are 858 and 859 amino acids long, respectively. Karchner and colleagues used molecular cloning techniques to determine the entire sequence of amino acids for each receptor protein. They showed that the chicken AHR has a 7-fold higher affinity for dioxin than the tern AHR, providing a molecular explanation for at least part of the difference in sensitivity between these species. They then traced the difference in affinity to the dioxin-binding regions of the chicken and tern proteins. Additional experiments showed that only two of the 168 amino acids in this region were responsible for the difference.

“These two amino acids account for the entire difference in binding affinity for dioxin, and therefore have a major impact on the difference in sensitivity between chicken and tern,” Karchner said.

The AHR protein has been well studied in mammals, but has not been as extensively characterized in non-mammalian vertebrates. The protein has a similar structure in different animals, which suggests that it originated long ago in evolutionary time. “It is a very old protein, and many of the amino acid sequences in this region of the protein have been kept similar over time⎯what is known as highly conserved sequences,” said Karchner. This high similarity allows the researchers to compare the AHR among different species. Cloning, in vitro expression, and analysis of protein function provide a promising method to study the potential impact of environmental contaminants on protected species.

“We looked at only two birds, the domestic chicken (Gallus gallus) and the common tern (Sterna hirundo),” Karchner said, “but you might be able to predict sensitivity of other wild animals by looking at a short section of a gene or protein sequence rather than conducting extensive studies on entire, large genes.” The authors report that other "less-sensitive" bird species share the same two critical amino acids as the common tern.

The research team included Karchner, Diana G. Franks and Mark E. Hahn of WHOI and Sean W. Kennedy from Environment Canada, National Wildlife Research Centre. In collaboration with Hahn and Karchner, Kennedy is continuing to collect samples from many species of wild birds to compare their AHRs. Hahn and others are pursuing similar studies in several species of marine mammals.

The study was supported with funding from the Woods Hole Sea Grant program.

Shelley Dawicki | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>