Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Telomere erosion may lead to shorter life expectancy in men

16.05.2006


This new study published in the journal “Cytogenetic and Genome Research” shows significantly shorter telomeres and higher erosion rates in men than in women, which likely causes a shorter life expectancy of male cells and tissues.



Human telomeres form the terminal structures of human chromosomes and play a pivotal role in the maintenance of genomic integrity and function. During aging, telomeres gradually shorten, eventually leading to cellular senescence. Therefore, in humans, short telomeres are considered to be a sign of advanced age.

In this study, the authors investigated human telomere length differences on single chromosome arms of 205 individuals in different age groups and sexes by T/C-FISH (telomere/centromere-fluorescence in situ hybridization), which allows precise measurement of individual telomeres.


In all chromosome arms there was a linear correlation between telomere length and donor age. Generally, the men had shorter telomeres and higher attrition rates than the women. However, every chromosome arm had its individual age-specific telomere length and erosion pattern, resulting in an unexpected heterogeneity in chromosome- specific regression lines. This differential erosion pattern does not seem to be accidental, though. The authors found a correlation between the average telomere length of single chromosome arms in newborns and their annual attrition rate, pointing towards a convergence of individual telomere lengths with age.

Apart from sex-specific discrepancies, the telomere lengths of specific chromosome arms were strikingly similar in men and women. This implies a mechanism that chromosome arms specifically regulate the telomere length independent of gender, thus leading to interchromosomal telomere variations.

Carla Holmes | alfa
Further information:
http://www.karger.com

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>