Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technologies and measures required to prevent landfill emissions from getting out of control

16.05.2006


The Technical Research Centre of Finland (VTT) has carried out studies on the emissions from municipal solid waste (MSW) that pose a threat to sustainable development. The results show that current landfills, as well as those scheduled to be constructed in the near future, may discharge environmentally hazardous emissions even 100-200 years into the future. Globally, the target is to ensure each landfill site is closed and its harmful emissions stopped within 50 years of the site’s establishment.



The study shows that even today’s well-designed landfills may emit significant amounts of carbon or nitrogen-based nutrients, hazardous metals dissolved in leachate, or methane - a powerful greenhouse gas - even 100-200 years after the site’s construction.

Globally, the primary target is to increase waste recycling and recovery and then dispose of the residue in ways that allow the landfill to be redeveloped as a sustainable part of the environment within 50 years of its establishment. In accordance with EU legislation, most of the emissions dissolved in leachate or methane may be collected from sealed landfills for 50-100 years. However, there is later a risk of leakage from the bottom liner and surface sealing, in which case the landfill’s emissions into the environment will once again increase.


Tightening requirements force most of European countries to introduce new municipal solid waste treatment methods in the near future. These new methods reduce the amount of both landfill waste and the biodegradable matter it contains.

Finland has some 90 MSW landfills, and waste incineration is far less widespread compared with many other European countries. In order to satisfy the EU requirements, Finland needs to increase its MSW treatment capacity by 600,000 tonnes by 2009, and by 1,200,000 tonnes by 2016. Besides more efficient waste sorting and treatment, new processes must also be developed for new types of landfill waste before its final disposal.

VTT’s study indicates that if the municipal solid waste produced today were sorted for recyclable fractions at a sorting plant, and the remaining waste were composted before disposal at the landfill, this would reduce the greenhouse gas and nutrient emissions by up to 80-95 per cent compared with current mixed waste landfills. Incineration eliminates gas and nutrient emissions from landfills almost completely. The management of metal and salt emissions from the slag and ash must nevertheless be addressed.

VTT’s study on the emissions from new types of landfills during operation and long after closure is rare in international terms, since most studies thus far have focused on emissions from current mixed waste landfills in the short term.

The study results can be used when planning the treatment of municipal solid waste in the future. VTT also continues to study the role of new municipal solid waste treatment methods in the reduction of greenhouse gas emissions and the commercialisation of such methods.

VTT is also conducting a project concerned with developing new technologies for the treatment of residue ash and slag produced by the thermal treatment of municipal solid waste. The aim is to develop treatment technologies for enhancing the safe use of bottom ash in land construction and for minimising ash-related emissions at the disposal site.

VTT’s study on the lifecycle emissions of future landfills was part of the Controlling Landfill Processes project that was coordinated by the University of Jyväskylä and funded by the National Technology Agency of Finland (Tekes), Finnish Solid Waste Association, MSW management companies and several enterprises.

Sirpa Posti | alfa
Further information:
http://www.vtt.fi

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>