Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technologies and measures required to prevent landfill emissions from getting out of control

16.05.2006


The Technical Research Centre of Finland (VTT) has carried out studies on the emissions from municipal solid waste (MSW) that pose a threat to sustainable development. The results show that current landfills, as well as those scheduled to be constructed in the near future, may discharge environmentally hazardous emissions even 100-200 years into the future. Globally, the target is to ensure each landfill site is closed and its harmful emissions stopped within 50 years of the site’s establishment.



The study shows that even today’s well-designed landfills may emit significant amounts of carbon or nitrogen-based nutrients, hazardous metals dissolved in leachate, or methane - a powerful greenhouse gas - even 100-200 years after the site’s construction.

Globally, the primary target is to increase waste recycling and recovery and then dispose of the residue in ways that allow the landfill to be redeveloped as a sustainable part of the environment within 50 years of its establishment. In accordance with EU legislation, most of the emissions dissolved in leachate or methane may be collected from sealed landfills for 50-100 years. However, there is later a risk of leakage from the bottom liner and surface sealing, in which case the landfill’s emissions into the environment will once again increase.


Tightening requirements force most of European countries to introduce new municipal solid waste treatment methods in the near future. These new methods reduce the amount of both landfill waste and the biodegradable matter it contains.

Finland has some 90 MSW landfills, and waste incineration is far less widespread compared with many other European countries. In order to satisfy the EU requirements, Finland needs to increase its MSW treatment capacity by 600,000 tonnes by 2009, and by 1,200,000 tonnes by 2016. Besides more efficient waste sorting and treatment, new processes must also be developed for new types of landfill waste before its final disposal.

VTT’s study indicates that if the municipal solid waste produced today were sorted for recyclable fractions at a sorting plant, and the remaining waste were composted before disposal at the landfill, this would reduce the greenhouse gas and nutrient emissions by up to 80-95 per cent compared with current mixed waste landfills. Incineration eliminates gas and nutrient emissions from landfills almost completely. The management of metal and salt emissions from the slag and ash must nevertheless be addressed.

VTT’s study on the emissions from new types of landfills during operation and long after closure is rare in international terms, since most studies thus far have focused on emissions from current mixed waste landfills in the short term.

The study results can be used when planning the treatment of municipal solid waste in the future. VTT also continues to study the role of new municipal solid waste treatment methods in the reduction of greenhouse gas emissions and the commercialisation of such methods.

VTT is also conducting a project concerned with developing new technologies for the treatment of residue ash and slag produced by the thermal treatment of municipal solid waste. The aim is to develop treatment technologies for enhancing the safe use of bottom ash in land construction and for minimising ash-related emissions at the disposal site.

VTT’s study on the lifecycle emissions of future landfills was part of the Controlling Landfill Processes project that was coordinated by the University of Jyväskylä and funded by the National Technology Agency of Finland (Tekes), Finnish Solid Waste Association, MSW management companies and several enterprises.

Sirpa Posti | alfa
Further information:
http://www.vtt.fi

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>